
0018-9162/04/$20.00 © 2004 IEEE July 2004 65

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Seamless Mobile
Computing on Fixed
Infrastructure

T he term “mobile computing” typically
evokes images of a laptop, handheld, or
wearable computer. However, the plum-
meting cost of hardware suggests that per-
vasive computing infrastructure could

minimize the need to carry such devices in the near
future. We envision a world in which computers
are provided for public use in locations ranging
from coffee shops to medical office waiting rooms.
We can even imagine each seat on an aircraft or a
commuter train being equipped with a computer
for the convenience of the current occupant.

In such a world, personal computing will be avail-
able anywhere on demand, like light at the flip of a
switch. Only when a user starts to use a computer
will it acquire his unique customization and state.
When he finishes using the computer, this cus-
tomization and state will disappear from it. Thus, a
user could travel hands-free yet be confident of mak-
ing productive use of slivers of free time anywhere.
For this to be a compelling vision from a user’s view-
point, the customization and state acquisition process
must be accurate and nearly instantaneous. For it to
be a viable business model, the management and sys-
tem administration costs of pervasive deployments
of machines must be low.

To address these challenges, we have developed
Internet Suspend/Resume (ISR), a pervasive com-
puting technology that rapidly personalizes and
depersonalizes anonymous hardware for transient
use (http://info.pittsburgh.intel-research.net/project/
isr). As its name implies, ISR mimics the closing and
opening of a laptop. A user can suspend work on an

ISR machine at one location, travel to another loca-
tion, and resume work there on any other ISR
machine. Of course, he can also resume on the orig-
inal ISR machine if he travels with it—this just hap-
pens to be an important special case of the more
general capability.

Hardware virtualization and file caching are the
keys to ISR’s precise customization and simple
administration. ISR layers virtual machines on a
location-transparent distributed file system that
aggressively caches data. Each VM encapsulates dis-
tinct execution and user customization state. The
distributed file system transports that state across
both space (from suspend site to resume site) and
time (from suspend instant to resume instant).
Because of its precise state capture and its efficient
state transport, ISR is a key enabling technology for
pervasive computing.

Our approach eliminates the need for modifica-
tions to guest applications or guest operating systems.
In particular, ISR supports unmodified Microsoft
software including any of the Windows operating
systems and the Office application suite. The average
user can thus benefit immediately from ISR.

ISR’s thick-client approach to mobility is funda-
mentally different from thin-client approaches.
Although thin-client solutions work well in some
situations, they are frustrating to use in failure-
prone, congested, or high-latency networks because
graphical user interactions such as scrolling and
highlighting are painful. In contrast, ISR offers crisp
interactive performance under all networking con-
ditions, including total disconnection.

Internet Suspend/Resume is a thick-client approach to mobility in
which hardware virtualization and file caching are the keys to rapid
personalization of anonymous hardware for transient use.

Michael
Kozuch
Intel Research
Pittsburgh

Mahadev
Satyanarayanan
Carnegie Mellon
University and Intel
Research Pittsburgh

Thomas
Bressoud
Denison University

Casey
Helfrich
Intel Research
Pittsburgh

Shafeeq
Sinnamohideen
Carnegie Mellon
University

66 Computer

DESIGN OVERVIEW AND RATIONALE
Simplicity was the driving force behind our deci-

sion to use a VM-based approach for state encap-
sulation. In 2001, Peter Chen and Brian Noble1 first
suggested that a VM’s clean encapsulation of state
might simplify state migration. In 2002, we reported
the first experimental validation of this hypothesis.2

Since then, a number of academic and commercial
efforts—including Zap,3 work by Constantine
Sapuntzakis and colleagues,4 and GoToMyPC
(www.gotomypc.com)—have explored the prob-
lem of transferring user customization across
machines.

Our implementation uses VMware Workstation
(henceforth just “VMware”), a commercial virtual
machine monitor (VMM) for the Intel x86 archi-
tecture that operates in conjunction with a host
operating system and relies on it for services such
as device management. VMware runs on several
host operating systems and supports a wide range
of guest operating systems including Windows
95/98, Windows 2000/XP, and Linux. VMware
maps each supported VM’s state to host files. After
suspension, these files can be copied to another
machine with a similar hardware architecture, and
VMware can resume execution of the VM there.

Easy deployment
As the “User Mobility Evolution” sidebar

describes, ISR bears some resemblance to a system
based on process migration. However, a VM-based
system is easier to deploy because it better encap-
sulates volatile execution state. In addition, a VM-
based system tolerates greater disparity between
the source and target systems across which migra-
tion occurs. Successful process migration requires
a close match between host and target operating
systems, language runtime systems, and so on. In
contrast, VM migration only requires a compati-
ble VMM at the target.

If the resume machine is known with certainty
at suspend, direct data transfer can be used to trans-
port VM state. However, users may not resume for
many hours or days, and the resume machine may
not be the one originally anticipated. In the face of
such uncertainty, direct data transfer would require
the suspend machine to preserve the user’s VM file
state for an extended period of time. Further, the
suspend machine cannot be turned off or un-
plugged from the network until resume occurs.
This violates our goal of granting ISR sites full
autonomy to simplify their management—as long
as there is no active user at an ISR machine, unplug-
ging it or turning it off should cause no disruption.

User Mobility Evolution

Internet Suspend/Resume is the latest step in a long historical evo-
lution toward user mobility on fixed infrastructure. The earliest form
of user mobility dates back to the early 1960s and was supported by
timesharing systems attached to “dumb” terminals, at any of which
users could access their personal environments.

Thin-client approaches such as InfoPad,1 SLIM,2 VNC,3 and
xmove4 are the modern-day realization of this capability, providing
just enough compute power to support GUIs. These strategies work
well in some situations but are frustrating to use in failure-prone, con-
gested, or high-latency networks. In such systems, even simple user
interactions such as scrolling and highlighting can be tedious because
current GUI designs assume very low end-to-end latency. ISR’s thick-
client approach to mobility is fundamentally different, offering crisp
interactive performance under all networking conditions, including
total disconnection.

Thick-client strategies became possible after the birth of personal
computing more than two decades ago. The vision of being able to use
any machine as your own, which dates back at least to the mid-1980s,
motivated both location transparency and client caching in the Andrew
File System. According to a 1990 article on AFS,5 “A user can walk up
to any workstation and access any file in the shared name space. A
user’s workstation is ‘personal’ only in the sense that he owns it.”

However, AFS only saves and restores persistent state; it does not
preserve volatile state such as the size and placement of windows. In
addition, the user sees the client’s native operating system and appli-
cation environment, which in many cases may not be the user’s pre-
ferred environment.

ISR closely resembles process migration. The key difference is that
ISR operates as a hardware-level abstraction, while process migration
operates as an OS-level abstraction. In principle, ISR would seem to
be at a disadvantage because hardware state is much larger. However,
in practice, the implementation complexity and software engineering
concerns of process migration have proved to be greater practical chal-
lenges. Successful implementations of process migration have been
demonstrated, but no widely used OS currently supports it as a
standard capability.

References
1. T.E. Truman et al., “The InfoPad Multimedia Terminal: A Portable Device

for Wireless Information Access,” IEEE Trans. Computers, vol. 47, no.
10, 1998, pp. 1073-1087.

2. B.K. Schmidt, M.S. Lam, and J.D. Northcutt, “The Interactive Performance
of SLIM: A Stateless, Thin-Client Architecture,” Proc. 17th ACM Symp.
Operating Systems and Principles, ACM Press, 1999, pp. 32-47.

3. T. Richardson et al., “Virtual Network Computing,” IEEE Internet Com-
puting, Jan./Feb. 1998, pp. 33-38.

4. E. Solomita, J. Kempf, and D. Duchamp, “Xmove: A Pseudoserver for X
Window Movement,” The X Resource, Nov. 1994, pp. 143-170.

5. M. Satyanarayanan, “Scalable, Secure, and Highly Available Distributed
File Access,” Computer, May 1990, pp. 9-21.

These considerations led us to a design in which
the Internet is the true home of VM state, and ISR
machines are merely temporary usage points of that
state. Because VMware stores state in files, a dis-
tributed file system is the obvious choice for ISR
Internet storage. Distributed file systems are a
mature technology, with designs such as the
Andrew File System (AFS) that aggressively cache
data at clients for performance and scalability.

Using a distributed file system, with each ISR
machine configured as a client, is the key to mobil-
ity. Demand caching ensures that relevant parts of
VM state follow a user from suspend to resume.
Using a distributed file system also simplifies site
management. Because an ISR machine holds user-
specific state only while active, it can be treated like
an appliance. The owner of an ISR site can turn an
unused machine on or off, move it, or discard it at
will without any centralized coordination or noti-
fication. The classic client-server model is thus a
better match for ISR than a peer-to-peer design,
even though it transfers data in two hops—suspend
machine to server, then server to resume machine.

Distributed file systems allow a highly asymmet-
ric separation of concerns, thereby reducing the
skill needed to administer ISR machines or to
deploy new ones. A small professional staff at an
operations center can handle tasks that require
expertise, such as backup for disaster recovery, load
balancing, and adding new users. We expect that
an operations center with file servers and profes-
sional staff will often be dedicated to a specific com-
pany, university, or Internet service provider. In that
case, domain-bridging mechanisms such as AFS
cells or Kerberos realms will be valuable when users
from different organizations use ISR at semipublic
locations such as coffee shops or doctor’s offices.

Large VM state
A key obstacle to using ISR is high resume

latency. Today, a typical VM can range in size from
a few Gbytes to many tens of Gbytes. Naive
approaches to transferring states this large will
result in intolerable resume latencies. Fortunately,
numerous real-world considerations can be
exploited to mitigate these delays.

Temporal locality. User mobility patterns often
exhibit temporal locality. For example, consider a
common pattern we envision for ISR: A user begins
his day by working at home, suspends work and
leaves for his office, resumes work at his office, sus-
pends work at the end of the business day, and
resumes work at home after dinner. In another
example, a corporate campus worker or a factory

supervisor might visit coworkers at various
locations many times throughout the day,
resuming and suspending work at any of
those locations.

In these scenarios, caching VM state at fine
granularity will translate temporal locality
of ISR machine usage into file reference
locality at those machines. Resume latency
will be much lower at ISR machines with
large persistent file caches because misses will
occur only on state that has changed since
the last use of that machine by its current
user.

Proactivity. With the help of higher-level software,
it may sometimes be possible to identify likely
resume machines and to proactively transfer VM
state to those machines, thereby lowering resume
latency. Because proactivity merely requires warm-
ing a file cache in our design, the consequences of
acting on a bad prediction are mild. A bad predic-
tion could evict useful files from a cache and may
waste network bandwidth, but there will be no loss
of correctness or need for complex cleanup.

State synthesis. Some VM state rarely changes
after initialization. For example, installing Win-
dows XP and the Microsoft Office suite on a small
VM configuration can consume one-quarter to
one-half its virtual disk capacity. Because this state
is identical on other similarly configured VMs, it
could be captured on read-only media such as CD-
ROMs and distributed to ISR machines with poor
Internet connectivity. At resume, ISR software
could synthesize large parts of the VM state from
the read-only media or the file caches of nearby
ISR machines, rather than demand-fetching it over
a slow network.

Portable storage
USB and FireWire data storage devices are widely

available today as unobtrusive flash-memory key
chains or microdrives. If a user is willing to carry
such a device, the system could copy part of the
user’s VM state to it at suspend and obtain the state
from it at resume, thereby improving performance
at poorly connected ISR sites.

However, using a portable storage device pre-
sents a number of problems:

• the entire VM state may not fit on the device;
• the copy operation may take too long at sus-

pend for a user who is in a hurry to leave;
• at resume, the VM state on the device could be

stale with respect to current VM state—for
example, if the user forgets to update the

July 2004 67

Distributed file
systems reduce
the skill needed

to administer
ISR machines
or to deploy
new ones.

68 Computer

Fauxide
(/dev/hdk)

Guest OS
(Windows XP)

Application
(Microsoft Word)

Virtual machine

VMM (VMware)

Host OS
(Linux)

Hardware

Vulpes

Distributed file system (Coda)

Figure 1. Internet Suspend/Resume host architecture. Fauxide, a loadable kernel
module, redirects disk I/O requests on /dev/hdk to Vulpes, a user-level process
that implements VM state transfer policy and maps VM state to files in Coda.

device at suspend or takes the wrong device
when traveling; and

• the device can be lost, broken, or stolen while
traveling.

A robust solution must treat portable storage
only as a performance assist, not as a substitute,
for the underlying distributed file system. Our
design makes data on portable devices self-vali-
dating: A stale device may not improve perfor-
mance, but it will never hurt correctness or
availability.

ARCHITECTURE AND IMPLEMENTATION
ISR uses the Coda distributed file system5 for

data storage and transport. This choice was based
on four key factors:

• complete VM state can fit into a cache because
Coda clients cache files on their local disks;

• Coda’s support for hoarding—anticipatory
cache warming—provides a clean interface
to exploit advance knowledge of resume
machines;

• Coda’s support for disconnected and weakly
connected operation provides resilience against
a wide range of failures and abnormal network
conditions; and

• Coda’s user-space implementation simplifies
experimentation.

ISR represents very large VMware files as a direc-
tory tree in Coda rather than as a single file. Virtual
disk state is divided into 256-Kbyte chunks, and
each chunk is mapped to a separate Coda file. These
files are organized as a two-level directory tree to
allow efficient lookup and access of each chunk.
Our choice of 256 Kbytes is based on a trace-dri-
ven analysis of chunk size on performance. The
large memory state file is stored in compressed form
and uncompressed into /tmp just prior to resume.

Figure 1 shows the client architecture that inter-
faces VMware to Coda. A loadable kernel module,
Fauxide, serves as the device driver for a pseudo-
device named /dev/hdk in Linux. A VM is con-
figured to use this pseudodevice as its sole virtual
disk in “raw” mode. Fauxide redirects disk I/O
requests to a user-level process, Vulpes, which
implements VM state transfer policy. Vulpes also
maps VM state to files in Coda and controls the
hoarding of those files and their encryption.
Because Vulpes is outside the kernel and fully under
our control, it is easy to experiment with a wide
range of state transfer policies.

Lookaside caching6 enables a Coda client to use
portable devices in a way that reduces vulnerability
to human error and device failure. On a cache miss,
the client first fetches metadata for the missing object
from the server. The Coda metadata definition has
been broadened to include the SHA-1 hash of file
content. With a valid hash, the client can obtain file
content from any matching source. For example, if
a mounted portable storage device has a file with
matching length and hash, the client can copy it
locally rather than fetching the file over a slow net-
work from the file server. Lookaside caching is flex-
ible since misses can be directed to a local file tree, a
mounted portable storage device, a nearby NFS or
Samba server, a neighboring ISR machine’s cache,
or even to distributed hash table storage.

Our implementation uses a hash index as a hint
to make lookaside caching more efficient. To detect
version skew between index and content, Coda
recomputes a file’s hash after a successful looka-
side. In case of a mismatch, Coda redirects the
cache miss to the file server. In that case, some small
amount of work is wasted on the lookaside path,
but consistency is still preserved. Coda’s callback
mechanism ensures that cached metadata, includ-
ing the hash, tracks server updates.

EVALUATION
Although our prototype is not yet of production

quality, it is robust enough for experiments to eval-
uate ISR’s performance tradeoffs.

From a user’s viewpoint, the two dominant ques-
tions about ISR performance are “How soon can I
begin working?” and “How sluggish is work after
I resume?” These questions correspond to the ISR
performance metrics resume latency and slow-
down. Ideally, both metrics would be zero.
Unfortunately, VM state transfer policies that
shrink resume latency may increase slowdown and
vice versa. We have therefore conducted a series of
controlled experiments to quantify these tradeoffs
for typical ISR scenarios.

Experimental methodology
Because ISR is intended for the interactive

workloads typical of a laptop environment, we
have developed a benchmark that models an inter-
active Windows user. The Common Desktop
Application (CDA) uses Visual Basic scripting to
drive Microsoft Office applications such as Word,
Excel, PowerPoint, Access, and Internet Explorer.
CDA pauses between operations to emulate think
time.

Our experimental setup consists of 2.0-GHz
Pentium 4 clients connected to a 1.2-GHz Pentium
III Xeon server through a 100-Mbps Ethernet. All
machines have 1 Gbyte of RAM and run Linux
RedHat 7.3. Clients use VMware Workstation 3.1
and have an 8-Gbyte Coda file cache. The VM is
configured with 256 Mbytes of RAM and 4 Gbytes
of disk storage and runs Windows XP as the guest
OS. A NISTNet network emulator controls avail-
able bandwidth to servers.

Without ISR support, our setup runs the CDA
benchmark in 1,071 seconds. This represents a
lower bound on the execution time of any ISR state
transfer policy because it eliminates the effects of
Fauxide, Vulpes, and Coda. Benchmark time serves
as the figure of merit for slowdown.

State transfer policies
Copyout/copyin is the most conservative end-

point in a spectrum of VM state transfer policies.
All state is copied out at suspend; resume is blocked
until the entire state has arrived. Resume latency
can be shortened by three steps, which can be com-
bined to generate a wide range of state transfer poli-
cies:

• propagating dirty state to servers before sus-
pend,

• warming the file cache in advance of arrival at
the resume machine, and

• letting the user resume before full state has
arrived.

Figure 2 shows a conceptual timeline for com-
paring such policies. The figure depicts a user ini-
tially working for duration t1 at machine 1; the user
then suspends work and travels to machine 2. In
some situations, the system knows (or can guess)
machine 2’s identity a priori. In other cases, the
machine may become apparent only when the user
shows up unexpectedly and initiates resume.

The transfer of dirty state from machine 1 to file
servers continues after suspend for duration t2. A
period t3 is then available for proactive file cache
warming at machine 2, if known. By the end of t3,
the user has arrived at machine 2 and initiates
resume. He experiences resume latency t4 before he
can resume work. He continues working at
machine 2 for duration t5 until he suspends again,
and the cycle repeats. With some state transfer poli-
cies, the user can experience significant slowdown
during the early part of t5 because some operations
block while waiting for the system to transfer miss-
ing state.

Baseline policy
The baseline policy is a worst-case straw man.

After suspend, all dirty state is transferred to the
server during t2; the period t3 is empty. At resume,
the entire VM state is transferred during t4 and
pinned in the resume machine’s cache.

As the “Baseline” column of Table 1 shows,
resume latency for this policy is large and highly
bandwidth-sensitive. At 100Mbps, resume latency
is about 40 minutes. At 10 Mbps, resume latency
roughly doubles; it does not increase by a factor of
10 relative to 100 Mbps because Coda, rather than
the network, is the bottleneck at the higher band-
width. Below 10 Mbps, resume latency is intolera-
ble.

The “Baseline” column of Table 2 confirms that
slowdown is negligible for the baseline policy. This
is because no cache misses occur after resume.
Below 100 Mbps, slowdown increases slightly due
to Coda background activity such as trickle reinte-
gration.

July 2004 69

t1 t2 t3 t4 t5

Machine 1 Travel Machine 2

Resume WorkSuspend

Figure 2. Conceptual ISR timeline. With some state transfer policies, the user can
experience significant slowdown during the early part of period t5.

70 Computer

Fully proactive policy
If we can predict machine 2, we can define a more

aggressive state transfer policy. At machine 2, this
policy shifts the entire state transfer time from t4 to
earlier periods in the ISR timeline. During t3 —or
earlier, for any state already available at the
servers—machine 2 transfers all updated state to
its local cache. At resume, all that remains is to
launch the VM. This policy is likely to be most
effective when a user is working among a small set
of sites, such as when alternating between home
and work.

As the “Fully proactive” column of Table 1
shows, resume latency is bandwidth-independent
and very small (10-11 seconds) because all neces-
sary files are already cached. Post-resume ISR exe-
cution is indistinguishable from the baseline.
Clearly, this policy is very attractive when feasible.

The minimum travel time needed for a fully
proactive policy is t2 + t3. In the best case, the
resume machine is known well in advance, and its
cache has been closely tracking the suspend
machine. Only the residual dirty state (about 47
Mbytes at the midpoint of the CDA benchmark)
must be transferred. This results in a minimum

travel time of 45 seconds on a 100-Mbps network
and 90 seconds on a 10-Mbps network. These are
credible bandwidths and walking distances
between collaborating workers at a typical univer-
sity campus, corporate site, or factory. At 1 Mbps,
which is available via DSL or cable modem to many
homes today, the best-case travel time is roughly
14 minutes. The attractiveness of ISR in such sce-
narios is likely to increase over time because net-
works will improve, but commutes are unlikely to
shorten.

Pure demand-fetch policy
Suppose a user arrives unexpectedly at an ISR

machine. To keep t4 short, a pure demand-fetch
policy only retrieves memory state during this
period. The transfer of VM disk state occurs on
demand over t5, resulting in Coda cache misses that
cause slowdown.

For our prototype and benchmark, the state
transferred during t4 is about 41 Mbytes. The time
to transfer this state is a lower bound on resume
latency for this policy. As the “Pure demand-fetch”
column of Table 1 shows, resume latency increases
from under one minute at LAN speeds to more
than one hour at 100 Kbps.

The slowdown for a pure demand-fetch policy
is highly sensitive to bandwidth, as Table 2 shows.
The total benchmark time increases from 1,105
seconds without ISR to 1,160 seconds at 100
Mbps; this represents a slowdown of about 8.3 per-
cent. As bandwidth drops, the slowdown increases
to 30.1 percent at 10 Mbps, 340.9 percent at 1
Mbps, and well over an order of magnitude at 100
Kbps. Although slowdowns below 100 Mbps will
undoubtedly be noticeable, their impact must be
balanced against the improvement in user produc-
tivity resulting from the ability to work anywhere,
even at unexpected locations.

Demand-fetch with lookaside policy
Lookaside caching can improve the pure

demand-fetch policy in many ways. If a user is will-
ing to wait briefly at suspend, the VM memory
state file can be written to a portable storage device.
At the resume machine, lookaside caching from the
device can reduce t4. If read-only or read-write
media with partial VM state are available at the
resume machine, lookaside caching can use them
to reduce the cost of cache misses during t5.

Table 1 presents results for the first of these sce-
narios. A comparison of the “Pure demand-fetch”
and “Portable storage lookaside” columns of this
table show a noticeable improvement below 100

Table 1. Resume latency, in seconds, for different state transfer policies and
bandwidths. Each result is the mean of three trials, with the standard
deviation in parentheses.

Pure Portable
Fully demand- storage

Bandwidth Baseline proactive fetch lookaside

100 Mbps 2,504 (18) 10.3 (0.1) 14 (0.5) 13 (2.2)
10 Mbps 5,158 (34) 10.2 (0.0) 39 (0.4) 12 (0.5)

1 Mbps > 9 hours 10.2 (0.0) 317 (0.3) 12 (0.3)
100 Kbps > 90 hours 11.4 (0.0) 4,301 (0.6) 12 (0.1)

Table 2. Running time, in seconds, of CDA benchmark for different state
transfer policies and bandwidths. Each result is the mean of three trials, with
the standard deviation in parentheses.

Fully
proactive Pure
(same as demand- DVD

Bandwidth Baseline baseline) fetch lookaside

100 Mbps 1,105 (9) ← 1,160 (6) 1,141 (36)
10 Mbps 1,170 (47) ← 1,393 (20) 1,186 (17)

1 Mbps 1,272 (65) ← 4,722 (69) 2,128 (34)
100 Kbps 1,409 (38) ← 42,600 (918) 13,967 (131)

July 2004 71

Mbps and a dramatic improvement at 100 Kbps. A
resume time of just 12 seconds rather than 317 sec-
onds (at 1 Mbps) or 4,301 seconds (at 100 Kbps)
can make a world of difference to a user who only
has a few minutes of time available to work while
in a coffee shop or a waiting room.

To explore the impact of lookaside caching on
slowdown, we used a DVD as a lookaside device.
The DVD contained VM state captured after instal-
lation of Windows XP and the Microsoft Office
suite but before any user-specific or benchmark-
specific customizations. Roughly half of the file
cache misses are satisfied through lookaside. As
Table 2 shows, using lookaside consistently reduces
benchmark time relative to a pure demand-fetch
policy, particularly at lower bandwidths.

S eamless ubiquitous access to a user’s uniquely
customized personal environment is the holy
grail of mobile computing. ISR represents an

important step toward this goal. By exploiting
advance knowledge of travel, transferring VM state
incrementally, and using portable storage, we have
shown that the performance cost of seamless mobil-
ity can be made acceptable. Using these techniques,
resume latency in ISR is little more than the typical
delay a user experiences when opening a laptop. By
leveraging the consistency of a distributed file sys-
tem, ISR is robust in the face of many human errors
and is tolerant of poorly managed environments.

ISR is a versatile mechanism with value beyond
mobile computing. By severing the tight binding
between personal computing state and computer
hardware, ISR frees PC state for use in many inno-
vative ways. For example, replicas of PC state could
be saved at widely separated Internet sites to allow
disaster-recovery after catastrophic failures. As
another example, a time-stamped snapshot of PC
state could be created, encrypted, digitally signed,
and asynchronously transmitted to a verification
authority to demonstrate compliance with security
advisories. In both cases, a user’s foreground activ-
ity can continue with minimal disruption.

In the future, we plan to explore these and other
exciting opportunities that ISR makes possible. We
also expect to address security concerns: Users must
be confident that anonymous computers are safe for
them to use. We currently assume that deployed
machines are secure, but we are planning research
to enforce this assumption. To address this difficult
challenge, we expect to leverage previous work
on secure coprocessors7,8 and ongoing research
by the Trusted Computing Group (www.trusted-
computinggroup.org) and Microsoft’s Next-

Generation Secure Computing Base (www.
microsoft.com/resources/ngscb/default.mspx). �

References
1. P.M. Chen and B.D. Noble, “When Virtual Is Better

Than Real,” Proc. 8th Workshop Hot Topics in
Operating Systems, IEEE CS Press, May 2001, pp.
133-138.

2. M. Kozuch and M. Satyanarayanan, “Internet Sus-
pend/Resume,” Proc. 4th IEEE Workshop Mobile
Computing Systems and Applications, IEEE CS Press,
June 2002, pp. 40-46.

3. S. Osman et al., “The Design and Implementation of
Zap: A System for Migrating Computing Environ-
ments,” Proc. 5th Symp. Operating Systems Design
and Implementation, ACM Press, Dec. 2002, pp.
361-376.

4. C.P. Sapuntzakis et al., “Optimizing the Migration
of Virtual Computers,” Proc. 5th Symp. Operating
Systems Design and Implementation, ACM Press,
Dec. 2002, pp. 377-390.

5. M. Satyanarayanan, “The Evolution of Coda,” ACM
Trans. Computer Systems, May 2002, pp. 85-124.

6. N. Tolia et al., “Integrating Portable and Distributed
Storage,” Proc. 3rd Usenix Conf. File and Storage
Technologies, Usenix Assoc., Mar. 2004, pp. 227-
238.

7. S.W. Smith and V. Austel, “Trusting Trusted Hard-
ware: Towards a Formal Model for Programmable
Secure Coprocessors,” Proc. 3rd Usenix Workshop
Electronic Commerce, Usenix Assoc., 1998, pp. 83-
98.

8. J.D. Tygar and B. Yee, “Dyad: A System for Using
Physically Secure Coprocessors,” Proc. Joint Har-
vard-MIT Workshop Technological Strategies for
Protecting Intellectual Property in the Networked
Multimedia Environment, 1993; www.cni.org/docs/
ima.ip-workshop/Tygar.Yee.html.

Michael Kozuch is a senior researcher at Intel
Research Pittsburgh, where his focus is on novel
uses of virtual machine technology. Kozuch
received a PhD in electrical engineering from
Princeton University. Contact him at michael.a.
kozuch@intel.com.

Mahadev Satyanarayanan is the Carnegie Group
Professor of Computer Science at Carnegie Mellon
University and the founding director of Intel
Research Pittsburgh. His research interests span
mobile computing, pervasive computing, and dis-

72 Computer

tributed systems. Satyanarayanan received a PhD
in computer science from Carnegie Mellon Uni-
versity. He is a member of the IEEE Computer
Society, a Fellow of the ACM and the IEEE, and
the founding editor in chief of IEEE Pervasive Com-
puting. Contact him at satya@cs.cmu.edu.

Thomas Bressoud is an assistant professor of com-
puter science in the Department of Mathematics
and Computer Science at Denison University and
an affiliate researcher at Intel Research Pittsburgh.
His research interests include fault tolerance, con-
tent-addressable storage, and distributed systems.
Bressoud received a PhD in computer science from
Cornell University. Contact him at bressoud@
denison.edu.

Casey Helfrich is a research engineer at Intel
Research Pittsburgh. His research interests include
distributed systems, virtualization of hardware, and
building research systems. Helfrich received a BS
in computer science from Carnegie Mellon Uni-
versity. Contact him at casey.j.helfrich@intel.com.

Shafeeq Sinnamohideen is a PhD student in the
Computer Science Department at Carnegie Mellon
University working on the Internet Suspend/
Resume project at Intel Research Pittsburgh. His
main research interest is in wide-area distributed
file systems. Sinnamohideen received an MS in
electrical and computer engineering from Carnegie
Mellon University. Contact him at shafeeq+www@
cyrus.watson.org.

Visit Computer

magazine online

for current articles,

links to online

resources, and

a collection of

classics that

changed the

computing field.

www.computer.org/computer/

