
Pervasive and Mobile Computing 1 (2005) 157–189

www.elsevier.com/locate/pmc

Towards seamless mobility on pervasive hardware

M. Satyanarayanana,∗, Michael A. Kozuchb, Casey J.Helfrichb,
David R. O’Hallarona

aSchool of Computer Science, Carnegie Mellon University, Pittsburgh PA, United States
bIntel Research Pittsburgh, Pittsburgh PA, United States

Received 1 March 2005; accepted 23 March 2005
Available online 31 May 2005

Abstract

Preserving one’s uniquely customized computing environment as one moves to different locations
is an enduring challenge in mobile computing. Weexamine why this capabilityis valued so highly,
and what makes it so difficult to achieve for personal computing applications. We describe a new
mechanism calledInternetSuspend/Resume (ISR)thatovercomes many of thelimitations ofprevious
approaches to realizing this capability. ISR enables a hands-free approach to mobile computing that
appears well suited to future pervasive computing environmentsin which commodity hardware may
be widely deployed for transient use. We show that ISR can be implemented by layering virtual
machine technology on distributed file system technology. We also report on measurements from a
prototype that confirm that ISR is already usable today for some common usage scenarios.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Mobile computing; Pervasive computing; Personal computing; Internet Suspend/Resume; Virtual
machines; VMware; Distributed file systems; Coda; Portable storage; Seamless mobility; Human attention; Thin
clients; Process migration

∗ Corresponding address: Carnegie Mellon University, School of Computer Science, 5000 Forbes Avenue,
15213 Pittsburgh, PA, United States. Tel.: +1 412 268 3743; fax: +1 412 268 4136.

E-mail addresses:satya@cs.cmu.edu (M. Satyanarayanan), michael.a.kozuch@intel.com (M.A. Kozuch),
casey.j.helfrich@intel.com (C.J. Helfrich), droh@cs.cmu.edu (D.R. O’Hallaron).

1574-1192/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2005.03.005

http://www.elsevier.com/locate/pmc

158 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

1. Introduction

The dawn of the 21st century has seen explosive interest in pervasive computing.
Coming roughly a decade after its founding manifesto by Mark Weiser [39], much of
this research addresses issues that may seemexotic relative to mainstream computing.
Noticeably absent from the discourse is any mention of what will happen to the enormous
installed base of personal computing applications, and the substantial investment people
have made in learning to use them effectively. Will spreadsheets, word processors,
illustration programs, tax preparation software, and such continue to exist in a pervasive
computing world? We believe that the need to calculate, write, draw, prepare tax returns
and so on is unlikely to vanish. If these applications will not disappear, what can pervasive
computing do for them? Canthis familiar world be improved in some fundamental way?
These are the questions we explore in this paper.

The plummeting cost of hardware hints at disruptive change on the horizon. Some
day, pervasive deployment of commodity hardware may liberate users from carrying a
laptop or having to use a specific desktop. Imagine a world where coffee shops, airport
lounges, dental and medical offices, and other semi-public spaces provide desktop or
laptop hardware for their clientele. In such a world, users could travel hands-free yet make
productive use of slivers of time anywhere. We envision a world in which the “personal”
(that is, user customization) aspect of personal computing is retained, but the “computing”
aspect becomes a commodity. The thesis of this paper is that seamless mobility of users in
such a world can be achieved without changing today’s well-entrenched base of personal
computing applications.

We begin by examining the characteristics of personal computing applications and the
importance of seamless mobility. Then, inSection 3, we compare existing design strategies
for seamless mobility and identify their strengths and weaknesses. From these roots, we
derive a new strategy. We describe the design, implementation and evaluation of this new
strategy inSections 4–7. We examine the assumptionsand limitations of our solution in
Section 8, and conclude with a summary inSection 9.

2. Background

2.1. Whither personal computing?

Since the birth of personal computing in the early 1980s, a vibrant ecosystem of
operating systems (OSes), graphical user interfaces (GUIs), applications, user expectations
and computing practices has evolved. The most valuable part of this ecosystem is a rich
collection of applications ranging from spreadsheets and word processors to CAD tools
and medical imaging aids. We refer to them aspersonal productivity applicationsbecause
their primary goal is to amplify the cognitive ability of a user. They share certain traits:

• Their workload typically involves long think times, during which the processor is
idle. Yet, crisp response is vital whenever a user emerges from the thinking phase
and interacts with the application. Sluggish response distracts the user and hurts
productivity.

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 159

• Use of the application typically involves critical persistent state (files) that is unique to
each user.

• Users customize each application to a significant extent. These customizations are
rarely frivolous; rather, they help a user tune the application to his specific cognitive
preferences and thus improve his productivity.

• Over time, these applications have evolved into tightly integrated application suites that
each dominate their specific niche. Microsoft’s Office suite is the best-known of these,
but many other examples exist. Skill in using the dominant application suite for a niche
is essential for professional success today.

This entire edifice rests upon the crisp interactive response made possible by low-
latency access to a dedicated local processor.It represents our collective reward for the
move from timesharing to personal computing. Unfortunately, in making that move we
gaveupa valuable capability — seamless mobility across hardware. A user could walk up
to any “dumb terminal” attached to a timesharing system and access his entire personalized
computing environment there. Since these terminals were stateless, differences between
them wereonly superficial.

In contrast, moving between two random personal computers today is rarely a seamless
experience. There are likely to be major differences in OS and application versions and
customizations. The persistent states on the two computers are completely disjoint, thus
requiring explicit management of files. In contrast to dumb terminals, personal computers
are painfully stateful!

Is it possible to preserve the hard-won benefits of personal computing, while regaining
the seamless mobility that came for free with timesharing? Can we do so without incurring
the problem that led to the death of timesharing, namely its poor interactive response under
heavy load? That is the challenge we address.

2.2. Why seamless mobility matters

Seamlessness has been an important attribute of mobile computing since the birth of the
field in the early 1990s. What does the term “seamless” mean, and why it is so important?
A seamless transition is one that involves a potentially disruptive state change, yet hardly
distracts the user. The classic exampleof this is cell phone handoff between two access
points — the user is never aware of the transition. Another example is the transition
between connected and disconnected operation in a system such as Coda [16].

Low distraction is the defining characteristic of seamlessness. In other words, very
little user attention is consumed. User attention is themost precious resource in mobile
computing. Moore’s Law does not apply to it, as it does to many other resources such as
CPU power, network bandwidth, and memory capacity. As a result, human attention does
not improve even over many decades.

The need to treat human attention as a consumable resource was first recognized by
Herb Simon [31]: “ What information consumes is ratherobvious: it consumes the attention
of its recipients. Hence a wealth of information creates a poverty of attention and a need
to allocate that attention efficiently among the overabundance of information sources
that might consume it”. Although this particular quote is from 1971, Simon’s focus on
human attention dates back to the late 1940s [30]. When mobile, some user attention is

160 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

consumed by basic needs such as avoiding obstacles or adjusting to an unfamiliar physical
environment. A scarce resource is thus made even scarcer by the demands of mobility.
Seamlessness is a highly valued quality in this situation because it lowers the demand on
user attention. Restoring a familiar environment, consistently meeting user expectations,
and avoiding surprises all help achieve seamlessness.

3. Design strategies for seamless mobility

Over time, a variety of strategies for achieving seamless mobility have emerged. We
briefly review these inSections 3.1–3.5and then compare their strengths and weaknesses
using a uniform framework inSection 3.6. We then usethis comparison to motivate a new
strategy, which is the subject of the rest of the paper.

3.1. Thin client

The earliest form of user mobility, dating back to the early 1960s, was supported
by timesharing systems attached to dumb terminals. Thin clients are the modern-
day realization of this capability. A thin client consists of a display, keyboard and
mouse combined with sufficient processing power and memory for graphical rendering
and network communication with a compute server using a specialized protocol. All
application and OS code is executed on the server. The client has no long-term user state
and needs no disk. Many thin-client protocols exist, and their relative merits have been
explored by Lai and Nieh [20].

Thin-client computing is similar to timesharing in that even trivial user–machine
interactions incur queuing delay on a resource that is outside user control. In both cases,
queuing delay is acutely sensitive to the vagaries of the external computing environment.
In timesharing, the shared resource is the processor. In thin-client computing, it is the
network. The adequacy of thin-client computing is highly variable, and depends on both the
application and the available network quality. If near-ideal network conditions (low latency
and high bandwidth) can be guaranteed, thin clients offer a good computing experience. As
network quality degrades, interactive performance suffers. It is latency, not bandwidth, that
is the greater challenge. Tightly coupled tasks such as graphics editing suffer more than
loosely coupled tasks such as web browsing. The combination of the worst anticipated
network quality and the most tightly coupledtask determines whether a thin client is
satisfactory. The extreme case of network disconnection cannot be tolerated by thin clients.

3.2. Distributed file system

Location transparent distributed file systems such as AFS [14] and Coda [28] have long
offered a limited form of seamless mobility. If auser restricts all his file accesses to such a
file system (including placing his home directory in it), he will see identical file state at all
clients. He can log in to any client, work for a while, log out, move to any other client, log
in, and continue his work. To quote a 1990 AFS paper [27]: “ User mobility is supported: A
user can walk up to any workstation and access any file in the shared name space. A user’s
workstation is ‘personal’ only in the sense that he owns it.”

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 161

There are a number of ways in which this capability falls short of the ideal of seamless
mobility. Only persistent state is saved and restored. Volatile state, such as the execution
states of interactive applications, is not preserved. Another shortcoming is that the user
sees the native operating system and application environment of the client. This part of his
computing environment is therefore notseamlessly preserved across machines.

3.3. Process migration

Process migration is an operating systemcapability that allows a running process to
be paused, relocated to another machine, and continued there. It represents seamless
mobility at the granularity of individual processes, and has been a research focus of many
experimental operating systems built in the past 20 years. Examples include Demos [24],
V [37], Mach [41], Sprite [8], Charlotte [1], and Condor [40]. These independent
validation efforts have shown beyond reasonable doubt that process migration can indeed
be implemented with acceptable efficiency.

Yet, in spite of its research popularity, no operating system in widespread use today
(proprietary or open source) supports process migration as a standard facility. The reason
for this paradox is that process migration is excruciatingly difficult to get right in the
details, even though it is conceptually simple. A typical implementation of process
migration involves so many external interfaces that it is easily rendered incompatible by a
modest external change. In other words, process migration is a brittle abstraction. Long-
term maintenance of machines with support for process migration involves too much effort
relative to the benefits it provides.

3.4. Language-based mobility

The audience of a language-based approachto mobility is an application developer
rather than a user. However, the approach is relevant to our discussion if all of a user’s
applications are written in this language. Anumber of advantages follow from limiting
discourse to applications written in a specificlanguage. By careful language definition, the
concept of seamless mobilitycan be built into the programming language and supported by
its runtime system. This support can be fine-grained (that is, at the granularity of individual
objects) rather than coarse-grained (as in the case of process migration). As a result, the
approach can support many configurations where parts of an application execute at one site
while others execute at another site. This is a much richer space of possibilities than that
offered by other approaches. Many corner cases that would be difficult to handle seamlessly
are avoided by careful language specification.

The best early example of work in this genre is Emerald [15]. A more recent example
is one.world [12]. The growth in popularity of Java and its support forremotemethod
invocation[23] have made this approach feasible and relevant to a widerange of computing
environments.

3.5. Aura task migration

A radically different approach to mobility is offered by the Aura system [10]. Rather
than trying to preserve as much of an environment as possible, Aura abstracts away most of

162 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

its application-specific components. What it strives to preserve across a move is the highest
layer of this abstraction,called thetask layer. The same task may be realized in different
wayson different hardware platforms, possibly using entirely different applications. What
is preserved is the notion of progress through the task, much like a checkpoint in workflow
software.

On each Aura client, a layer above individual applications and services calledPrism
manages task migration. By explicitly representing user intent, Prism makes available to
the rest of the system a powerful basis on which to adapt or anticipate user needs. The
implementation runs on Windows XP, and supports task migration for the Microsoft Office
suite. Sousa and Garlan [33] provide further details on Prism and task migration in Aura.

3.6. Comparing strategies

A critical comparison of existing strategies for seamless mobility may point the way to
a better solution. With this goal in mind, we have identified a set of attributes along which
strategies for seamless mobility can be compared:

• Seamlessness:How smooth and unobtrusive is the user experience when moving from
one site to another? How closeis the environment at the new site to that at the old? How
much re-familiarization and adjustment does the user have to make? How distracted is
the user in adjusting from the old world to the new?

• Solution Generality:Does the solution work for all applications or only for a few?
Do applications have to be modified, recompiled or relinked? How stringent are the
language, programming model and related constraints imposed on applications?

• Network Resilience:How critically dependent is the solution on the network? How
badly does poor network quality (low bandwidth or high latency) hurt user experience?
How long does the connectivity to the old site from the new have to last? Can the user
continue work in the face of network disconnections?

• Ubiquity: How easy is widespread deploymentof the solution? How many critical
assumptions does it make about the similarity of the old site and the new? How robust
is the solution in the face ofsystem heterogeneity? What is the level of expertise and
quality of system administration needed to sustain a deployment in the real world?

• Network Load:How large is the volume of data transferred? Is the network workload
bursty oruniform?

• Implementation complexity:How hard is the solution to build, debug and get right?
How difficult is it to maintain in the face of application, operating system and hardware
changes?

Table 1shows how each of the strategies discussed inSections 3.1–3.5 maps tothe
above attributes. For simplicity, we have chosen scores of “high”, “medium”, and “low”
to characterize a strategy with respect to anattribute. A score of “high” is best for the
attributes of seamlessness, solution generality, network resilience, and ubiquity. A score of
“low” is best for the attributes of network load and implementation complexity.

The thin-client approach receives top scores on almost all attributes. Seamlessness is
excellent because the old and new environments are indistinguishable except possibly
for minor differences in the display and keyboard/mouse. The approach works for all

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 163

Table 1
Comparison of strategies for seamless mobility

Seamlessness Solution Network Ubiquity Network Implementation
generality resilience load complexity

Thin client high high low high low low
Distributed file system medium high high medium medium medium
Process migration high high medium low medium high
Language-based mobility high medium medium medium medium medium
Aura task migration low low high low low medium

ideal solution high high high high low low
plausible near-ideal high high high high likely high likely high

applications and requires no modifications tothe operating system. It is easy to implement
and trivial to deploy, thus earning it top scores on implementation complexity and ubiquity.
Keystrokes, mouse movement and display updates generate only modest network load.
The Achilles heel of thin clients is their poornetwork resilience. They cannot tolerate
disconnection, and user experience degrades when network quality is poor.

Distributed file systems score well on solution generality because they are integrated
with the operating system. An application that is written to use local files works unchanged
on remote data. The use of caching keeps network load acceptable except when files are
very large. Cache misses and update propagation require use of the network, but designs
such as Coda keep this dependence to a bare minimum. Hence, this approach receives a
highscore for network resilience. It does not receive the top score for seamlessness because
a user sees the native operating system environment, which may differ at the old and new
sites. It does not receive the top score for ubiquity because it requires changes or extensions
to the operating system.

Process migration scores well on seamlessness and solution generality. Since it is tightly
integrated with the operating system, it re-creates an application’s execution environment
with great fidelity at the destination. However, for reasons discussed inSection 3.3, it
scores poorly on ubiquity and implementation complexity.

Language-based mobility scores well on seamlessness since this property is well
supported by the language and its runtime system. However, it does not work for
applications that are written in a different language. The scores for solution generality
and ubiquity are hence lower.

Aura task migration allows for the possibility of a different application and modality
of interaction when a user moves from an old site to a new one. By design, it therefore
scores low on the seamlessness attribute. Solution generality and ubiquity are low since
this approach is critically dependent on Aura. Network resilience is high, since the old site
is not accessed after task migration.

3.7. Deriving a better strategy

From Table 1, it is clear that no existing strategy scores high on all of the first four
attributes. In other words, no existing strategy offers a high degree of seamlessness for all

164 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

applications while remaining easy to deploy and resilient to poor network quality. Can one
invent a new strategy with these properties?

A clue to solving this problem comes from the adage that there is no free lunch. In
other words, there will have to be a tradeoff.This suggests that any solution that scores
well on the first four attributes is likely to score poorly on the last two. A plausible
solution is therefore likely to impose substantial network load and involve considerable
implementation complexity. The last row ofTable 1 illustrates the attributes of such a
plausible solution.

In the rest of this paper, we describe a strategy for seamless mobility calledInternet
Suspend/Resume (ISR)that has these attributes. Recognizing that network bandwidth will
continue to improve, ISR exploits this ample bandwidth by encapsulating theentirestate
of a personal computer (including its disks) and delivering it anywhere on demand. It thus
builds upon the concept of a caching file system, with the significant difference that it is
now entire machine state (not just user files) that is delivered through caching. The volume
of state transferred is now much larger. This is the tradeoff being made for more precisely
and completely recreating a user’s entire computing environment.

4. Internet Suspend/Resume

4.1. Background

As its name implies, ISR was inspired by the suspend/resume feature of laptops. That
capability was created by laptop designers as a means of extending battery life. To enter the
suspended state one just closes the cover of a laptop. In that state very little energy is used.
When the cover is opened, the state at suspend is restored with near-perfect fidelity within
a few seconds. In the context of this paper, suspend/resume achieves seamless mobility at
the cost of having to carry hardware.

Our key insight was to recognize that the suspend/resume metaphor could be extended
to situations where a user carries no hardware. In other words, one can logically suspend
a machine at one Internet site, travel to some other site and then seamlessly resume
work there on another machine. By mimicking the suspend/resume feature of laptops
we gain two advantages. First, this is a simple and well-understood metaphor for users.
Second, operating systems and applications have already been evolved to gracefully cope
with a number of discontinuities across suspend and resume. For example, a dynamically
obtained IP address may change when a laptop is resumed at a location far from where
it was suspended. As another example, most laptop applications thatuse the network
transparently re-establish TCP connections that are broken on suspend. As a third example,
USB devices attached to a docking station are missing when a laptop is resumed by a user
on his travels; they reappear upon return. By leveraging existing mechanisms and user
expectations, ISR greatly reduces the need to modify operating systems and applications,
and the need to re-educate users.

4.2. Hypothetical scenario

ISR inspires many futuristic scenarios,and effectively creates a new computing
paradigm. Imagine, for example, this hypothetical ISR scenario from 2020:

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 165

The alarm rings to begin a hectic Thursday for Shanta. She is soon in her study, working
on the slides for the class that she will be teaching this morning. Soon it is time to leave. She
clicks on the suspend icon on the screen, and her work is saved. On the commute to work,
she stops at her doctor’s office for a simple medical test. Unfortunately, the technician
is backed up and Shanta has to wait much longer than expected. She borrows a wireless
laptop from the office staff, logs in, resumes her work, and finishes a few more slides for
class before the technician is ready for her. Shanta suspends her work, hands back the
laptop, goes in for the test, and is soon on the road again. Reaching her office just 10 min
before class, Shanta uses her desktop to put the finishing touches on her lecture slides and
then leaves for class. Each classroom is equipped with an LCD projector connected to a
networked computer. Shanta resumes where sheleft off in her office and proceeds to give
an entertaining and insightful lecture.

When she returns to her office from class, Shanta finds that the computing services
staffhas replaced her desktop by a newer and much more powerful machine that she had
recently ordered. Fortunately, she does not have to waste any time in setting up the new
machine,copying files or customizing it in any way. All she does is to log in, and she finds
her work just where she left off at the end of class. Her day proceeds as planned.

Late in the afternoon, Shanta leaves for the airport and takes a flight for a business
meeting thenext day. The fold-out tray at each seat has come a long way from its simple
ancestor of the early 21st century. When it isn’t being used as a tray, it doubles as a
screen/keyboard/mouse that is connected to a rack of blade servers at the back of the
aircraft. Shanta resumes work where she left off in her office, completing the slides for
her talk and her spreadsheet calculations for the budget discussions the next day. High-
bandwidth wireless Internet connectivity is available from the aircraft, but it is very
expensive. Shanta therefore chooses to work disconnected during the flight.

When Shanta checks in to her hotel, the clerk at the front desk hands her a laptop for
use during her visit. There is a drop-off site near the airport departure gates where she can
return the laptop the next day. Shanta works late into the night, completing her slides and
spreadsheet calculations. Her meetings the next day are intense, but ultimately successful.
The deal is clinched, and Shanta’s hosts invite her to an early dinner to celebrate.

When Shanta returns to her rental car after dinner, she is dismayed to find that
her luggage (including laptop) has been stolen. Fortunately, nothing on the laptop is
ir replaceable. Her precious computing state (including many highly confidential files) were
saved on servers on the Internet when she last suspended work. All residual personal state
on the laptop was encrypted, so the damage and inconvenience from the loss of the laptop
is only its hardware cost. Except for a small deductible, Shanta’s homeowner insurance
will cover everything. On the flight home, Shanta orders a drink and falls asleep. . . .

4.3. Realization

Although the scenario in the previous section is science fiction, the mechanism on which
it is predicated is implementable today. ISRcan be realized by combining two off-the-shelf
technologies:virtual machine(VM) technology anddistributed file systemtechnology.
Each VM encapsulates distinct execution and user customization state. The distributed
file system transports that state across space (from suspend site to resume site) and time
(from suspend instant to resume instant).

166 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Fig. 1. Virtual machine layered on host OS.

A VM is an emulated hardware abstraction whose fidelity is so good that neither
system nor application software executing within the VM can tell that it is not directly
executing on bare hardware [11]. Emulation is performedwith the assistance of avirtual
machine monitor(VMM). All our work on ISR until now has used VMware Workstation
(abbreviated to just “VMware”), a commercial VMM for the Intel IA-32 architecture [13].
VMware operates in conjunction with ahostoperating system, relying on it for services
such as device management.Fig. 1 illustrates this situation. VMware runs on several
host OSes and supports a wide range of guest OSes including Windows 95/98, Windows
2000/XP, and Linux. VMware maps the state of a VM to host files. When a VM is
suspended, its volatile state is also saved in a file. After suspension, the VM’s files can
be copied to another machine with a similar hardware architecture; there, VMware can
continue execution of the machine.

Distributed file systems are a mature technology, with designs such as AFS that
aggressively cache data at clients for performance and scalability. The use of such a
distributed file system, with all ISR sites configured as clients, is the key to mobility and
simplified management of ISR sites. Demand caching at aresume site ensures that relevant
parts of VM state follow a user from suspend to resume. Since an ISR site holds no user-
specific state except during active use, it can betreated like an appliance. An idle site can
be turned off, moved, or discarded at will without centralized coordination or notification.

The highly asymmetric separation of concerns made possible by a distributed file system
reduces the skill level needed to manage ISR sites. Little skill is needed to maintain
machines or to deploy new ones. System administration tasks that require expertise (such
as backup, restoration, load balancing, and addition of new users) are concentrated on a
few remotely located servers administered by a small professional staff. We expect that
server hardware and the professional staff to administer them will often be dedicated to a
specific organization such as a company, university or ISP. Since locations such as coffee
shops and doctors’ offices are likely to be visited by ISR users belonging to many different
organizations, domain-bridging mechanisms such as AFScellsor Kerberosrealmswill be
valuable.Fig. 2 illustrates how a deployment of ISR might be organized.

4.4. Evolution

Since the fall of 2001 we have evolved the ISR concept through three prototype
implementations: ISR-1, ISR-2 and ISR-3. All three prototypes have used VMware as the
virtual machine monitor and Linux as the host operating system. ISR-1 was a proof-of-
concept implementation that used NFS for file storage. By the end of 2001, this prototype

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 167

Fig. 2. Hypothetical ISR deployment.

had confirmed that layering a VM on a distributed file system could indeed yield seamless
suspend and resume functionality [18]. Our next step was to improve the performance of
ISR and to expand its functionality to support disconnected operation and use of portable
storage devices. This led to a new prototype, ISR-2, that used Coda as its distributed file
system. From early 2002 until late 2004, we used ISR-2 to explore many aspects of the ISR
concept and to develop techniques for improving its performance and functionality [19].
In late 2004, we turned our attention to real-life deployment of ISR and to gaining hands-
on usage experience. This required us to create a new prototype. ISR-3 subsumes much
of the code and functionality of ISR-2, but offers simpler installation and usage as well
as greater flexibility in system configuration [17]. In ISR-3, Coda is only one of many
possible mechanisms that can be used for distributed storage of VM state. The structure of
ISR-3 makes it easy to replace Coda with alternatives such as AFS or Lustre [29], or to use
a built-in storage layer based on HTTP and SSH.

We focus on ISR-2 in this paper. The system descriptions inSections 5and 7 also
apply to ISR-3 if Coda is used as the distributed storage layer. However, the performance
measurements reported inSections 6and7 apply specifically to ISR-2 — we have not yet
conducted a performance evaluation of ISR-3. With rare exception, we do not distinguish
between specific prototypes in the rest of this paper. It will usually be clear from the context
whether the term “ISR” means the broad concept or “ISR-2”.

5. ISR design and implementation

5.1. Distributed file system

Wehad a choice of three distributed file systems for ISR: NFS, AFS and Coda. Although
NFS is the most widely supported of these, we did not use it for two reasons. First, NFS
only does caching of blocks in memory; it doesnot cache data persistently in the local file
system. Hence, the cache size at an ISR site can beno larger than its memory size, which is

168 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

typically much smaller than total VM state size. This limits ISR’s ability to take advantage
of temporal locality of access to VM state. Second, our goal is to support ISR anywhere
on the Internet, including locations with less than optimal network connectivity. NFS is
designed for LAN access, and tends to perform poorly in WAN environments.

Both AFS and Coda clients use the local diskas a file cache. AFS is a much more robust
and mature implementation, with an extensive deployment base and better performance. In
spite of this, we decided to use Coda for the following reasons.

First, Coda’s support for hoarding (anticipatory cache warming) provides a clean
interface to take advantage of advance knowledge of resume site. Although originally
developed to cope with disconnection, this mechanism can also be used to improve
performance by warming a cache in advanceof use. All that is needed is a list of file
names and their relative importance.

Second, Coda supports trickle reintegration which is valuable for propagating dirty
client state to file servers in the background from poorly connected ISR sites. This reduces
the amount of dirty state waiting to be propagated at suspend. Although a user can walk
away immediately after suspend, the owner of the ISR site cannot turn off or unplug it
until its cache state is clean. Trickle reintegration improves site autonomy by shortening
this window of vulnerability.

Third, the AFS client implementation is entirely in the kernel. In contrast, the Coda
client implementation is almost entirely in user space; only a small module for redirecting
file references resides in the kernel. Theuser space implementation simplified our
extensions for use of portable storage, as explained inSection 7.2.

5.2. Security model

VM state is encrypted by ISR client software before being stored in Coda. Neither
servers nor persistent client caches contain VM state in the clear. Compromise of Coda
serverscan, at worst, result in denial of service. Compromise of a client after a user
suspends can at worst prevent updated VM state from being propagated to servers, also
resulting in denial of service. Even in these situations, the privacy and integrity of VM
state are preserved.

When a user walks up to an ISR client machine, he must explicitly authenticate himself
via a mechanism such as Kerberos [34] before hecan resume. We have not addressed
the much harder problem of establishing that an ISR client is safe to use. It is up to the
user to make this judgement. This is an acceptable solution in restricted locations such as
home or work, but does not scale to unrestricted locations. Scenarios likeSection 4.2will
require mechanisms that enable a user to be confident that the hardware and software on a
random client have not been compromised. Many researchers are investigating this difficult
problem [32,36,38], and we plan to leverage workable solutions that emerge.

5.3. Data layout

Caching VM state at fine granularity is important for taking advantage of temporal
locality in user movements. Large, monolithic VM state files are therefore not a good
match for Coda’s policy of caching entire files. The mismatch is especially acute for files
corresponding to virtual disks, which can be many tens of GB in size. Our solution is to

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 169

Fig. 3. Trace-driven analysis of chunk size.

represent such large files as a directory tree rather than as a single file. Virtual disk state
is divided into 128 KB chunks, and each chunkis mapped to a separate Coda file. These
files are organized as a two-level directory tree to allow efficient lookup and access of each
chunk.

Our choice of 128 KB for chunk size is based upon a trace-driven analysis of
two opposing concerns. If the chunk size is too large, internal fragmentation becomes
significant. Whole file caching will waste bandwidth when partially written files are
transferred to servers. Further, each demand miss will waste bandwidth as the client fetches
data that it never uses. If the chunk size is too small, we will generate too many cache
misses because we fail to adequately exploit spatial locality. Since each cache miss slows
performance, the overallimpact can be significant.

To determine appropriate values for the chunk size, we captured a trace of the disk
blocks fetched by VMware during the execution of an industry-standard PC benchmark
calledSysmark[5]. We adapted a cache simulation package,Dinero IV [9], to calculate the
miss ratio and bandwidth consumed during workload execution for various chunk sizes.
Fig. 3presents the results of these simulations. As the figure shows, a chunk size of 128 KB
strikes areasonable balance between bandwidth wastage and miss ratio.

5.4. Client architecture

Fig. 4 shows the client architecture that we have developed to interface VMware to
Coda. A loadable kernel module calledFauxideserves as the device driver for a pseudo-
device named/dev/hdk in Linux. A VM is configured to use this pseudo-device as its sole
virtual disk in “raw” mode. Disk I/O requests to/dev/hdk are redirected by Fauxide to a
user-level process calledVulpes.It is Vulpes that implements VM state transfer policy, as
well as the mapping of VM state to files in Coda. Vulpes also controls the hoarding of those
files. Since Vulpes is outside the kernel and fully under our control, it is easy to experiment
with a wide range of state transfer policies.Fig. 5 illustrates the logical layering of an ISR
client.

170 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Fig. 4. ISR clientarchitecture.

Fig. 5. ISR client layering.

6. ISR performance

6.1. Metrics

From a user’s perspective, the key performance metrics of ISR can be characterized by
two questions:

• How soon after resume can I begin useful work?
• After I resume, how much is my work slowed down?

We refer to the first metric asresume latencyand the second asslowdown. Ideally
one would like zero resume latency and zero slowdown. In practice, there are trade-offs

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 171

between the two. Shrinking resume latency may increase average slowdown and vice
versa. An important goal of our performance evaluation was to quantify these trade-offs for
typical ISR scenarios. A related goal was to determine whether our prototype and today’s
networking infrastructure are adequate for ISR deployment. As discussed below, our results
confirm that ISR is already usable today forsome common usage scenarios. At the same
time, the results also reveal certain limitations of our prototype.

6.2. Benchmark

ISR is intended for interactive workloads typical of laptop environments. Applications
from the Microsoft Office suite dominate such workloads. We initially considered an
industry-standard PC benchmark calledSysmark[5]. Unfortunately, this proprietary
benchmark has very restrictive limitations on publication of results. We have therefore
developed our own benchmark called theCommon Desktop Application (CDA)that models
an interactive Windows user.

CDA uses Visual Basic scripting to driveMicrosoft Office applications such as
Word, Excel, PowerPoint, Access, and Internet Explorer. CDA operates on each of
these applications independently. The operations mimic typical actions that might be
performed by an office worker. In totality, CDA consists of a total of 113 independently
timed operations such asfind-and-replace, open-document, andworksheet-sort.
Actions such as keystrokes, object selection, or mouse-clicks are not timed. CDA pauses
between operations to emulate think time. The pause is typically 10 s, but is 1 sec for a few
quick-response operations such asfind-and-replace.

The input data sets used by CDA are of moderate size. For example, Excel operates on
two spreadsheets. One is 4783 rows by 6 columns, and occupies 570 KB of disk space;
the other is 4095 rows by 100 columns, and occupies 1.7 MB. Word is used on a short
novel of 760 KB (initially without images);PowerPoint operates on a 20-slide, 116 KB
presentation; the Access database is approximately 2 MB; and the Internet Explorer data
set is446 KB of html pages.

Approximately 50% of the benchmark operations generate disk traffic at the Vulpes
interface, with a roughly exponential distribution of data volume. The most disk-intensive
operation is launching PowerPoint, which transfers 5.6 MB.Fig. 6 shows the data access
characteristics of this benchmark, as seen byVulpes. Thecurves labelled “Reads” and
“Writes” show the cumulative volume of readand write traffic seen by Vulpes over the
life of the benchmark. The curves labelled “Unique clean” and “Unique dirty” show the
cumulative amount of distinct data read or written during the benchmark. The difference
between “Read” and “Unique clean” indicates the extent of temporal read locality as
seen by Vulpes. Similarly, the difference between “Write” and “Unique dirty” shows the
temporal write locality seen by Vulpes. Note that I/O buffer caches inside the guest and
host OSes absorb a significant amount of read and write locality, thus lowering the locality
seen by Vulpes.

6.3. Experimental setup

Our experimental infrastructure consisted of 2.0 GHz Pentium 4 clients connected to a
1.2 GHz Pentium III Xeon server through 100 Mb/s Ethernet. All machines had 1 GB of

172 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Fig. 6. Data accesses seen by Vulpes. This figure shows the cumulative volume of data read and written at the
Vulpes interface by the CDA benchmark. The benchmark time in this figure is longer than the 1071 s shown in
Table 2because of slowdown caused by the logging in Vulpes that provided the data for this figure.

Table 2
Benchmark time: no ISR support

With think time (s) No think time (s)

1071(10) 93 (6)

The first column shows the total running time of the benchmark. Each data point is the mean of three trials,
with standard deviation in parentheses. The second column is obtained by summing the execution times of the
individual operations that make up the benchmark.

RAM, and ran RedHat 7.3 Linux. Clients used VMware Workstation 3.1 and had an 8 GB
Coda file cache. The VM was configured to have 256 MB of RAM and 4 GB of disk, and
ran Windows XP as the guest OS.

We used the NISTNet network emulator [7] to control available bandwidth. We
measured ISR performance at four different bandwidths: 100 Mb/s, 10 Mb/s, 1 Mb/s and
100 Kb/s. The first two correspond to LAN speeds, and NISTNet was not configured to
add any latency at these speeds. At 1 Mb/s, we configured NISTNet to add 10 ms latency,
and at 100 Kb/s it added 100 ms.

Table 2shows the benchmark time on our experimental setup without ISR support. In
other words, the files used by VMware are on the local file system rather than on/dev/hdk.
The effects of Fauxide, Vulpes and Coda are thus completely eliminated, but the effect of
VMware is included. The total running time of 1071 s is a lower bound on the benchmark
time achievable by any state transfer policy in our experiments.

6.4. VM state transfer policies

The copyout/copyin mechanism of ISR-1 is the most conservative endpoint in a
spectrum of VM state transfer policies. All state is copied out at suspend; resume is blocked
until the entire state has arrived. Three steps can be taken to shorten resume latency:

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 173

Fig. 7. Conceptual ISR timeline.

• Propagate dirty state toservers before suspend.
• Warm the file cache at the resume site.
• Allow resume to occur before full state has arrived.

These steps are not mutually exclusive, and can be combined in many different ways to
generate a wide range of policies. We explore some of these policies below.

The conceptual timeline shown inFig. 7 provides a uniform framework for our
discussion of policies. The figure depicts a user initially working for durationt1 at Internet
locationsite1. He then suspends, and travels to Internet locationsite2. In some situations,
the identity ofsite2 is known (or can be guessed) a priori. In other situations, it becomes
apparent only when the user unexpectedly shows up and initiates resume. The transfer of
dirty state fromsite1to file servers continues after suspend for durationt2. Thereis then
a periodt3 available for proactive file cache warming atsite2, if known. By the end of
t3, the user has arrived atsite2 and initiates resume. He experiences resume latencyt4
before he is able to begin work again. He continues working atsite2for durationt5 until
he suspends again, and the above cycle repeats itself. With some state transfer policies, the
user may experience slowdown during the early part oft5 because some operations block
while waiting for missing state to be transferred.

Note thatFig. 7 is only a canonical representation of the ISR timeline. Many special or
degenerate cases are possible. For example,t2 may not end before resume if travel duration
is very short. In that case, the residue oft2 may add tot4 in contributing to resume latency.
On the other hand, a clever state transfer policy may allow this residue to overlapt4. In
other words, propagation of dirty state from the suspend site to file servers could overlap
state propagation from those servers to the resume site. Another special case is whent5 is
very brief. With such a short dwell time, full VM state may never accumulate atsite2—
only enough to allow the user a few moments of work past the suspend point at the end of
t1. While many such special cases are conceivable, the timeline inFig. 7 is likely to cover
a wide rangeof common real-world scenarios.

6.5. Baseline policy

6.5.1. Description
The baseline policy is a worst-case strawman that we do not expect to be used in

practice. After suspend, all dirty state is transferred to the server duringt2. The period
t3 is empty. Following resume, the entire VM state is transferred to the resume site during
t4 and pinned in the client cache. Note here that no state transfer occurs during either
execution periodt1 or t5. This optimizes for execution speedat the cost of suspend and
resume latency.

174 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Table 3
Resume latency: baseline

Bandwidth Resume latency

100 Mb/s 2504(18) s
10 Mb/s 5158(34) s
1 Mb/s >9 h
100 Kb/s >90 h

This table shows resume latency for the baseline policy at different bandwidths. The results for 100 Mb/s and
10 Mb/s are actual experimental measurements: in each case, the mean of three trials is reported along with the
standard deviation in parentheses. The results for 1 Mb/s and100 Kb/s are estimated, and were obtained by
dividing total VM state size by nominal bandwidth.

This policy is applicable whensite2cannot be predicted and when the site may become
disconnected after a successful resume. For this policy, we expect the resume latency to
be the longest, as it transfers the entire state int4, but expect slowdown to be the shortest,
because all VM state is available locally before resume.

Our implementation of the baseline policy has the Coda client at each ISR site operating
in write-disconnected mode. In this mode, dirty cache state is trickled back to servers in
the background. This can cause slight performance degradation of foreground activity and
thus contributes to slowdown. However, it also improves suspend latency by reducing the
volume ofdirty state to be propagated at suspend.

6.5.2. Results
We expect the baseline policy to exhibit poor resume latency because all state transfer

takes place during the resume step. We also expect network bandwidth to be a dominant
factor.Table 3confirms this intuition.

At 100 Mb/s, the resume latency is about 40 min. When bandwidth drops to 10 Mb/s,
resume latency roughly doubles. The reason it does not increase by a factor of 10 (to match
the drop in bandwidth) is that the data transfer rate at 100 Mb/s is limited by Coda rather
than by the network. Only below 10 Mb/s does the network become the limiting factor.
The results inTable 3show that the baseline policy is only viable at LAN speeds, and even
then only for a limited number of usage scenarios.

In contrast to resume latency, we expect slowdown tobe negligible with the baseline
policy because no ISR network accesses should be necessary once execution resumes.
Tables 2and4 confirm that slowdown is negligible at 100 Mb/s. The total running time
of the benchmark increases from 1071 to 1105 s. This translates to a slowdown of about
3.2%, where slowdown is defined as(Tbw − Tnoisr)/Tnoisr, with Tbw being the benchmark
running time at the given bandwidth andTnoisr its running time in VMware without ISR.
This slowdown can be viewed as the intrinsic overhead of ISR. It is composed of two
parts: the overhead due to indirection through Fauxide and Vulpes, and the greater cost of
file operations such asopen andclose in Coda relative to the local file system. To focus
on operation latency one can exclude think time from total benchmark running time. The
second column ofTable 2and the third column ofTable 4show that total operation latency
grows from 93 to 113 s, an increase of about 22.5%.

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 175

Table 4
Benchmark time: baseline

Bandwidth With think time (s) No think time (s)

100 Mb/s 1105(9) 113(2)
10 Mb/s 1170(47) 168(47)
1 Mb/s 1272(65) 204(56)
100 Kb/s 1409(38) 251(24)

The second column shows the total running time of the benchmark at various bandwidths for the baseline policy.
Each data point is the mean of three trials, with standard deviation in parentheses. The third column is obtained
by summing the execution times of the individual operations that make up the benchmark.

As bandwidth drops below 100 Mb/s, Tables 2and 4 show that slowdown grows
slightly. It is about 9.2% at 10 Mb/s,18.8% at 1 Mb/s, and31.6% at 100 Kb/s. This slight
dependence on bandwidth is due to Coda background activity such as trickle reintegration.

6.6. Fully proactive policy

6.6.1. Description
If we can predictsite2, we can define a much more aggressive state transfer policy. At

site2, this policy shifts the entire state transfer time fromt4 to earlier periods in the ISR
timeline. Duringt3 (or earlier, for any state already available at the servers)site2transfers
all updated state to its local cache. Note that this includes both VM disk and memory state.
At resume, all that remains is to launch the VM.

We expect this policy to be most effective when a user is working among a small set of
sites, such as when alternating between home and work. If two sites start in a synchronized
virtual state, then the state to be transferred during travel is limited to the unique state
modified duringt1. Like thebaseline policy, after a successful resume the fully proactive
policy permits operation atsite2while disconnected.

For this policy, we expect resume latency to be shortest, because all state transfer has
been moved to timet3. Slowdown will also be minimal because all state is available before
resume. As in the baseline case, trickle reintegration contributes slightly to this slowdown.

6.6.2. Results
With a fully proactive policyone expects resume latency to be bandwidth independent

and very small because all necessary files are already cached. The only delays incurred
are those of Vulpes uncompressing the file containing the suspended VM memory image,
and of VMware launching a VM with this image.Table 5confirms this intuition. Resume
latency isonly 10–11 s at all bandwidths.

Post-resume ISR execution under a fully proactive policy is indistinguishable from
the baseline policy. The user experience, including slowdown, is identical. The results of
Table 4therefore apply to both policies. Clearly, the fully proactive policy is very attractive
from the viewpoint of resume latency and slowdown.

What is the minimum travel time for a fully proactive policy to be feasible? This
duration corresponds tot2 + t3 in Fig. 7. There are two extreme cases to consider. In
the best case, the resume site is known wellin advance and its cache has been closely

176 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Table 5
Resume latency: fully proactive

Bandwidth Resume latency (s)

100 Mb/s 10.3(0.1)
10 Mb/s 10.2(0.0)
1 Mb/s 10.2(0.0)
100 Kb/s 11.4(0.0)

This table shows the resume latency for the fully proactivepolicy at different bandwidths. Each data point is the
mean of three trials; standard deviations are in parentheses.

tracking the cache state at the suspend site. Allthat needs to be transferred is the residual
dirty state at suspend — the same state that is transferred to servers duringt2. For our
experimental configuration, we estimate this state to be about 47 MB at the mid-point of
benchmark execution. Using observed throughput values in our prototype, this translates
to minimum best case travel time of 45 s with a 100 Mb/s network, and about 90 s with
a 10 Mb/s network. Both of these are credible bandwidths and walking distances today
between collaborating workers in a university campus, corporate campus or factory.

At lower bandwidths, we estimate the best case travel time to be at least 800 s (roughly
14 min) at 1 Mb/s,and 8000 s (roughly 2 h 15 min) at 100 Kb/s. The 14 min travel time
is shorter than many commutes between home and work, and bandwidths close to 1 Mb/s
are available to many homes today.

In the worst case, the resume site has a completely cold cache and is only identified at
the moment of suspend. In that case,t3 must be long enough to transfer the entire state
of the VM. From the baseline resume latencies inTable 3and the value oft2 above, we
estimate minimum travel time to be 2550 s (roughly 43 min) for a 100 Mb/s network, and
5250 s (88 min) for a 10 Mb/s network. These are plausible travel times from office or
home to aircraft seat.

To summarize, there are some common usage scenarios today where a fully proactive
strategy makes ISR viable. Over time, network infrastructure will improve, but travel times
are unlikely to decrease. Hence, we expectISR with a fully proactive policy to become
viable for a broader range of scenarios in the future.

6.7. Pure demand-fetch policy

6.7.1. Description
Suppose a user arrives unexpectedly at an ISR site. If we wish to keept4 as short as

possible, we can use a pure demand-fetch policy to amortize the cost of retrieving the
VM disk state overt5. In this policy, only virtual memory state is retrieved duringt4; the
transfer of disk state in 128 KB chunks is deferred. As soon as the virtual memory state
has arrived, the VM is launched. Then, duringt5, disk accesses by the VM may result in
cache misses that are serviced from the file server.

We expect the resume latency for this policy to be short, as only critical state is
transferred duringt4. We also expect substantial slowdown because of cache misses
duringt5.

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 177

Table 6
Resume latency: pure demand-fetch

Bandwidth Resume latency (s)

100 Mb/s 14 (0.5)
10 Mb/s 39 (0.4)
1 Mb/s 317 (0.3)
100 Kb/s 4301 (0.6)

This table shows the resume latency for the pure demand-fetch policy at different bandwidths. Each data point is
the mean of three trials; standard deviations are in parentheses.

6.7.2. Results
In our prototype, the state transferred at resume for pure demand-fetch is the compressed

memory image of the VM at suspend (roughly 41 MB). The transfer time for this file is a
lower bound on resume latency for this policy at any bandwidth. AsTable 6shows, resume
latency rises from well under a minute at LAN speeds of 100 Mb/s and10 Mb/s to well
over an hour at 100 Kb/s.

We expect the slowdown for a pure demand-fetch policy to be very sensitive to
workload. If the workload has high temporal locality of virtual memory and file accesses,
Vulpes will access relatively few chunks. The first access to each file results in a cache
miss, and will therefore contribute to slowdown. High spatial locality in the workload will
also result in relatively few chunks being accessed.

Table 7shows the observed running time of the benchmark under a pure demand-fetch
policy. To estimate slowdown, these numbers should be compared to the non-ISR results
of Table 2. The total benchmark time rises from 1071 s without ISR to 1160 s at 100 Mb/s.
This represents a slowdown of about 8.3%. As bandwidth drops, the slowdown rises to
30.1% at 10 Mb/s, 340.9% at 1 Mb/s, and well over an order of magnitude at 100 Kb/s.
The slowdowns below 100 Mb/s will undoubtedly benoticeable to a user. But this must be
balanced against the potential improvement in user productivity from being able to resume
work anywhere, even from unexpected locations.

Table 8shows thedistribution of slowdown across benchmark operations. At 100 Mb/s,
43% of the operations are slowed down less than 10%; 27% are slowed down between 10%
and 50%; and so on. As bandwidth drops, a greater fraction of the operations are slowed
by higher amounts.

6.8. Impact of storage efficiency

Since Coda is an experimental user-level system, it is less efficient than a well-tuned,
in-kernel NFS implementation. As mentioned inSection 6.5.2, the effect is noticeable
only above 10 Mb/s. To get an idea of the potential for improvement, we measured the
pure demand-fetch policy at 100 Mb/s using NFS rather than Coda.Table 9presents the
results. Comparing this with Tables 6and8, we see that there is significant improvement
in both resume latency and slowdown. However, at the more challenging bandwidths for
ISR (below 10 Mb/s), merely improving file system efficiency does not help much. Other
mechanisms, such as proactivity, are needed in those situations.

178 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Table 7
Benchmark time: pure demand-fetch

Bandwidth With think time (s) No think time (s)

100 Mb/s 1160 (5.6) 173 (9.5)
10 Mb/s 1393 (20.1) 370 (14)
1 Mb/s 4722 (69) 2688 (39)
100 Kb/s 42600 (918) 30 531 (1490)

The second column shows the total running time of the benchmark at various bandwidths for the pure demand-
fetch policy. The entries in the third column are obtained by summing the execution times of the individual
operations that make up the benchmark. Each data point isthe mean of three trials, with standard deviation in
parentheses.

Table 8
Slowdown summary for CDA operations

Slowdown (%) 100 Mb/s (%) 10 Mb/s (%) 1 Mb/s (%) 100 Kb/s (%)

<10 43 37 27 28
10–50 27 19 19 13
50–100 11 8 5 5
100–400 12 22 8 3
400–1000 6 5 11 2
>1000 1 9 30 49

This table summarizes the distribution of slowdown for benchmark operations at different bandwidths. For each
operation, slowdown is defined as(Tbw−Tnoisr)/Tnoisr, whereTbw is the operation latency at the given bandwidth
andTnoisr is its latency when run in VMware without ISR.

Table 9
Impact of file system efficiency

(a) Resume Latency: Demand-Fetch with NFS

Bandwidth Resume latency (s)

100 Mb/s 6(0.03)

(b) Slowdown Summary: Demand-Fetch with NFS

Slowdown (%) 100Mb/s (%)

<10 50
10–50 33
50–100 12
100–400 5
400–1000 0
>1000 0

Part (a) depicts the resume time for the benchmark under the demand-fetch policy. Part (b) depicts the distribution
of operation slowdown values, alsounder the demand-fetch policy.

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 179

Fig. 8. Lookaside servicing of a cache miss.

7. Augmenting ISR with portable storage

7.1. Background

Our discussionof ISR until this point has emphasised its “hands-free” or “carry-
nothing” aspect. In practice, users may be willing to carry something small and unobtrusive
if that would enhance their ISR usage experience. Today, USB and Firewire storage devices
in the form of storage keychains or microdrives are widely available. By serving as a local
source of critical data, such a device could improve ISR performance at sites with poor
network connectivity.

There are at least two risks with using a portable storage device to hold VM state. First,
it could be out of date with respect to current VM state in the distributed file system.
This might happen, for example, if the user forgets to update the device at suspend or
if he absent-mindedly picks up the wrong device for travel. Second, the device may be
lost, broken or stolen while travelling. These considerations suggest that ISR should treat
a portable storage device only as a performance enhancement, not a substitute, for the
underlying distributed file system. They also suggest that data on portable devices be self-
validating: a stale device may not improve performance, but should do no harm.

7.2. Lookaside cache miss handling

Wehaveextended Coda with a simple yet versatile mechanism calledlookaside caching
to take advantage of portable storage as a performance enhancement. Lookaside caching
consists of three parts: a small change to the client-server protocol; a quick index check (the
“lookaside”) in the code path for handling a cache miss; and a tool for generating lookaside
indexes. Dynamic inclusion or exclusion of indexes is done through user commands.

Fig. 8 illustrates the steps involved in handling a cache miss through lookaside. In the
modified client-server protocol, access to anon-cached file begins with an RPC to obtain
file attributes such as file size and modification time. This RPC now returns the SHA-1
hash value [21] of the file. The change adds only 20 bytes to the size of the original RPC
reply, which is acceptable even on slow networks. Coda’s callback mechanism ensures that
cached hash information tracks server updates.

180 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

The lookaside occurs between the RPCs to fetch file status and file contents. Since the
client possesses the hash of the file at this point, it can cheaply consult one or more local
lookaside indexes to see if a local file with identical SHA-1 value exists. Trusting in the
collision resistance of SHA-1, a copy of the local file can then be a substitute for the RPC
to fetch file contents. To detect version skew between the local file and its index, the SHA-1
hash of the local file is re-computed. In case of a mismatch, the local file substitution is
suppressed and the cache miss is serviced by contacting the file server. Coda’s consistency
model is not compromised, although some small amount of work is wasted on the lookaside
path.

The index tool walks the file tree rooted at a specified pathname. It computes the SHA-1
hash of each file and enters the filename–hash pair into the index file. The only requirement
on the file tree is that it be part of the filename space on which the tool is run: it can be local,
on a mounted storage device, or even on a nearby NFS or Samba server. For a removable
medium, the index is located on the medium itself. This yields a self-describing portable
storage device that can be used at any ISR site.

7.3. Demand-fetch with lookaside policy

7.3.1. Description
The performance of the pure demand-fetch policy, discussed inSection 6.7, can be

improved by using lookaside caching. If a user is willing to wait briefly at suspend, the
virtual memory image and a lookaside index for it can be written to his portable storage
device. He can then remove the device and carry it with him. At the resume site, lookaside
caching can use the device to reducet4.

Another use of lookasidecaching exploits the fact that many parts of VM state
rarely change. For example, the parts of VM disk state corresponding to executable
code for applications and dynamically linked libraries do not change after installation.
An organization that deploys ISR could make this VM state widely available on read-
only media such as CD-ROMs or DVDs. Lookaside caching from such media can reduce
the cost of cache misses duringt5, andhence improve the slowdown metric. Note that
management complexity is not increased because misplaced or missing media do not hurt
correctness. Since multiple lookaside devicescan be in use simultaneously, these distinct
uses of lookaside caching can be easily combined.

7.3.2. Results
Our experiments show that demand fetch performance can be substantially improved

through lookaside caching.Table 10presents our results for the case where a portable
storage device is updated with the compressed virtual memory image at suspend, and used
as a lookaside device at resume. ComparingTables 6and10 we see that the improvement
is noticeable below 100 Mb/s, and is dramatic at 100 Kb/s. A resume time of just 12 s
rather than 317 s (at 1 Mb/s) or 4301 s (at 100 Kb/s) can make a world of a difference to
a user with a few minutes of time in a coffee shop or a waiting room. Even at 10 Mb/s,
resume latency is a factor of 3 faster (12 s rather than 39 s).

Notice that lookaside caching helps exactly when a fully proactivepolicy is infeasible
because the resume site is not predictable. Further, the use of lookaside caching ensures

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 181

Table 10
Resume latency: USB lookaside

Bandwidth Resume latency (s)

100 Mb/s 13 (2.2)
10 Mb/s 12 (0.5)
1 Mb/s 12 (0.3)
100 Kb/s 12 (0.1)

This table shows the resume latency for a demand-fetch policy where a portable storage device containing the
virtual memory image at suspend is available to lookaside caching at the resume site. Each data point is the mean
of three trials; standard deviations are in parentheses. Thedevice used for these experiments was a USB portable
disk.

Table 11
Benchmark time: DVD lookaside

Bandwidth With think time (s) No think time (s)

100 Mb/s 1141 (35.7) 161 (27.8)
10 Mb/s 1186 (17.3) 212 (12.3)
1 Mb/s 2128 (33.6) 1032 (31.0)
100 Kb/s 13967 (131.4) 9530 (140.9)

The second column shows the total running time of the benchmark for a demand-fetch policy where lookaside
caching has a DVD available for lookaside. As explained inSection 7.3.2, the DVD contains VM state prior to
user customization. The entries in the third column areobtained by summing the execution times of the individual
operations that make up the benchmark. Each data point isthe mean of three trials, with standard deviation in
parentheses.

that human errors such as using the wrong device are detected and gracefully handled by
the system. Resume latency will then matchTable 6, but the user will resume in the correct
state.

To explore the impact of lookaside caching on slowdown, we constructed a DVD with
the VM state captured after installation of Windows XP and the Microsoft Office suite,
but before anyuser-specific or benchmark-specific customizations. We used this DVD as a
lookaside device during the benchmark.Table 11presents our results.

ComparingTables 7and11, we see that benchmark time is reduced at all bandwidths.
The reduction is most noticeable at lower bandwidths: roughly a factor of 2 at 1 Mb/s
(2128 s rather than 4722 s), and a factor of 3 at 100 Kb/s (13967 s rather than 42600 s).
The user impact of lookaside caching can be visualized by examining the distribution of
slowdown for individual benchmark operations. Comparing the two columns ofFig. 9, one
sees that fewer operations suffer large slowdown with lookaside caching. This is especially
noticeable at low bandwidths.

7.4. Off-machine lookaside

We have recently extended lookaside caching to use off-machinecontent-addressable
storage(CAS).The growing popularity of planetary-scale services such as PlanetLab [22],
distributed hash-tables such as Pastry [26], Chord [35], Tapestry [42] and CAN [25], and
logistical storage such as the Internet Backplane Protocol [3], all suggest that CAS will

182 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

Fig. 9. Impact of lookaside caching on slowdown of CDAbenchmark operations. These figures compare the
distribution of slowdown for the operations of the CDAbenchmark without lookaside caching to their slowdowns
with lookaside caching to a DVD.

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 183

Table 12
Benchmark time: jukebox lookaside

Bandwidth With think time (s) No think time (s)

100 Mb/s 1068 (5.7) 103 (3.9)
10 Mb/s 1131 (6.8) 163 (2.9)
1 Mb/s 2256 (24.7) 899 (26.4)
100 Kb/s 13514 (30.7) 8567 (463.9)

The second column shows the total running time of the benchmark for a demand-fetch policy where lookaside
caching uses a jukebox for lookaside. The jukebox contains the same state as the DVD used for the results
of Table 11. The entries in the third column are obtained by summing the execution times of the individual
operations in the benchmark. Each data point is the mean of three trials, with standard deviation in parentheses.

become a widely supported service in the future [4]. For brevity, we refer to any network
service that exports a CAS interface as ajukebox.When presented with a hash, the jukebox
returns content matching that hash, or an error code indicating that it does not possess
requested content.

Lookaside caching enables ISR to make opportunistic use of jukeboxes. The
term “opportunistic” is important here: we treat jukeboxes purely as a performance
enhancement; we do not depend on them for consistency. A collection of ISR sites
with mutual trust (typically at one location) can export each other’s Coda file caches as
jukeboxes. No protocol is needed to maintain mutual cache consistency. Divergent caches
may, at worst, reduce the performance improvement from lookaside caching.

For each type of jukebox, we implement alookaside proxythat encapsulates theprotocol
used by that jukebox. Jukeboxes may be added or removed at runtime, and more than one
jukebox can be in use at any given time.Table 12shows theperformance benefit of using
a LAN-attached jukebox with same contents as the DVD ofSection 7.3.2. We see similar
improvement in the DVDand jukebox cases.

8. Assumptions and limitations of ISR

Although ISR is viable on current technology, its full potential lies in the future.
It is useful to understand which aspects of ISR are limitations of current technology
or implementation status, and which are fundamental. Toward this end, we examine its
underlying assumptions and limitations in this section. We use the hypothetical scenario
of Section 4.2as a working example throughout this section. We also refer back to the
alternative approaches to seamless mobility discussed inSection 3.

8.1. Network bandwidth

Perhaps the most fundamental assumption of ISR is the existence of high bandwidth for
VM state transfer. Logically, the entire stateof a VM (typically many tens of GB, possibly
hundreds of GB) has to be transferred on suspend and resume. This is the price paid for
the simplification of state management provided by ISR — one’sentirepersonal computer
is delivered on demand. This deliberate profligacy represents an important tradeoff. We
believe that it is easier and simpler to blindly ship a lot of bits than to sustain the

184 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

management attention and system administration discipline needed to widely deploy a
more frugal abstraction such as process migration.

Logical state transfer does not, however, have to always mean physical state transfer.
Clever policies can give the illusion of full VM state transfer while actually transferring
much less data. These policies do rely on some assumptions. The fully proactive approach
assumes that it is possible to predict a user’s resume site with confidence, and that it is
possible to rely on a mostly warm persistent cache at that location. Simple predictive ability
(based on static locations such as work andhome) exists today. Infuture, we will need to
extend this using more sophisticated prediction schemes that rely, for example, on mobility
history or integration with calendaring and meeting scheduling software. The pure demand-
fetch policy is a “pay as you go” approach to bandwidth use, but it has the weakness that it
is depends on network connectivity to service cache misses. Network resilience, which is
one of the strong points of ISR relative to thin clients, suffers with a demand fetch policy.

The use of lookaside caching on portable storage represents a different approach to
reducing bandwidth usage. Here, “sneakernet” is being combined with the real network to
give a composite that has the best of both worlds: device bandwidth and consistency of
a real network. If one is willing to compromise consistency, it is possible to imagine an
approach where VM state on a portable device is used without contacting servers to verify
that it is up to date. Such an approach relies entirely on “sneakernet” and therefore requires
zero network bandwidth. Caceres et al. [6] describe a system based on this approach.

It is possible to shrink the size of a VM by placing all user data directly in a distributed
file system. The VM only encapsulates the OS and application state; the user data is
delivered separately, using the same underlying caching mechanism. This is a usage model
that combines traditional PC practice in the Windows world, with the practice found
in many Unix environments that rely on distributed file systems. Explicit hoarding of
user data will then be necessary to ensure disconnected operation. This approach can be
advantageous when the amount of data in user files is much greater than OS and application
state. It gives the user direct control at fine granularity over a large part of his total state,
while treating OS and application state as an opaque entity.

8.2. Network dependence

Distinct from the volume of data transferred is the issue of network availability. Once
data is fully hoarded, ISR does not require the network to be available. The disconnected
operation capability of the underlying storage system (Coda in ISR-2) provides the illusion
of connectivity for ISR. Optimistic replica control in Coda allows cached state to be used
even when disconnected. Updates are buffered by the client, and eventually reintegrated
when network connectivity is restored. There is no danger of conflicting updates on
reintegration because ISR uses pessimisticconcurrency control at coarse granularity —
resume occurs only after a lock on the entire VM state is acquired from ISR servers.

Thus, ISR isasynchronousin its network dependence. Connectivity is needed while
hoarding data, and during eventual reintegration. For extended periods between these two
events (possibly lasting many hours), total disconnection is acceptable and has absolutely
no performance impact. If the ISR client machine is a laptop, a user can be as mobile and
productive with it during the period of disconnection as he is with a laptop today. Of course,

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 185

direct use of the network by the user (such as Web browsing) cannot be supported while
disconnected. But all other work such as editing, authoring, and so on, can be performed
just as if the network were up. It is this capability that Shanta makes use of on the plane in
the scenario ofSection 4.2.

The asynchronous network dependence of ISR distinguishes it from thesynchronous
network dependence of thin clients. By definition, disconnected operation is impossible
with thin clients. The quality of the network has to be sufficient at all times for crisp
interactive response. Note that it is the worst case, not the average case, that determines
whether a thin-client approach will be satisfactory. An organization that adopts thin-client
computing must also invest in system management resources to ensure adequate network
quality at all times for its most demanding interactive tasks. Adding bandwidth is relatively
easy, but reducing latency is much harder. In addition to physical layer transmission delays
and end-to-end software path lengths, technologies such as firewalls, overlay networks, and
lossy wireless networks add latency and other hurdles. Even when using a pure demand-
fetch policy, ISR performance is not sensitive to network latency even though it is sensitive
to network bandwidth,

Interest in thin clients is very high today because of frustration with the high total cost
of ownership of PCs. Unfortunately, dependence on thin clients may hurt the important
goal of crisp interactive response. There is extensive evidence from the HCI community
that interactive response times over 150 msare noticeable and begin to annoy a user as
they approach 1 s. To attain the goal of seamless mobility with thin clients, one needs very
tight control on end-to-end network latency. This is hard to achieve at large scale. Like a
thin client, an ISR client is stateless from the viewpoint of long-term user state. ISR can
be viewed as a solution that trades off startup delay for crisp interaction: once execution
begins, all interaction is local.

8.3. Ubiquitous virtualized hardware

A key requirement for ISR is that every client must have the same hardware architecture.
While cross-architecture emulation is possible, the performance degradation is usually too
high to be acceptable. We therefore see architectural uniformity of hardware, at least at the
instruction set level, as a long-term assumption of ISR.

Another key requirement is the availability of ISR support on all potential clients. At
present, this consists of two parts: the host OS with supporting software such as Coda,
and the VMM. In the near term, we see these as components that have to be maintained
by system administrators. In the long term, stripped-down versions of these components
may be integrated with the BIOS on a client. In that case, there would be no software to
maintain on clients. ISR clients would then be as stateless as thin clients are today.

Virtualization can mask many hardware differences such as CPU speed and memory
size, and can even emulate missing features such as MMX instructions on the Intel IA-32
architecture. However, an ISR user may sometimes wish to be aware of such differences.
For example, a PowerPoint animation created on a machine with a fast CPU and a high-
resolution display may not work well on poorer hardware. For ISR to succeed in these
situations, it is necessary to verify adequate hardware compatibility before the resume
step is attempted. One way to achieve this would be for the VM state to be tagged with

186 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

an encoding of hardware requirements, and for these requirements to be checked in the
lock acquisition phase of resume. The tag information could also be used when selecting
hardware to assign to a user, as at hotel check-in in the scenario ofSection 4.2.

9. Conclusion

In summary, our results confirm that ISR performs well enough today for serious use in
some scenarios. For example, a fully proactive strategy is well matched to a situation where
a user has a home office and multiple corporate offices. Such a user would greatly value
the simplicity of a single personalized computing environment that can be suspended and
resumed at will among these locations. Usingportable storage with lookaside caching, this
capability could be extended to poorly connected work sites. On a corporate or university
campus with 100 Mb/s or better connectivity, a pure demand-fetch policy would allow
users who are away from their offices to productively use any nearby machine. This may
lead to enhanced levels of collaboration and spontaneous deep interactions between users.

Our work so far has treated the VMM and guest OS as black boxes. Many optimizations
are conceivable if we can modify these layers. While this is a promising future research
direction, it may be a difficult path because itrequires the cooperation of software vendors
and may compromise the freely distributable open-source character of ISR prototypes.
Using an open-source VMM such as Xen [2] may avoid thesedrawbacks.

Since ISR is a new approach to personal computing, its widespread use may lead to
client, server and network workloads that are very different from those studied in the past.
There are also important usability questions that are difficult to answer with confidence in
the absence of hands-on usage experience. Hence, an essential component of our research
plan isthe creation and maintenance of an ISR pilot deployment at Carnegie Mellon that
is in daily use by a small user community. Empirical data and usage-based insights from
this test bed will guide and prioritize our research efforts. We may also extend this pilot
deployment to other user communities to obtain broader validation of ISR.

Of course, these are only baby steps toward the kind of futuristic ISR scenario described
in Section 4.2. Enabling such scenarios will require major advances in ISR and security
technologies, broader deployment of high-bandwidth network infrastructure, new business
models, and societal acceptance of this newmodel of computing. The reward for this
effort will be a transformation of information technology that brings it closer to the ideal
expressed by Weiser [39]: “ The most profound technologies are those that disappear. They
weave themselves into the fabric of everydaylife until they are indistinguishable from it”.
Whenone’s personal computing environment is as ubiquitous as light at the flip of a switch
or water from a faucet, it will indeed have been woven into the fabric of everyday life!

Acknowledgements

We would like to thank the organizers of the PerCom 2004 conference for inviting
M. Satyanarayanan to present the keynote talk upon which this paper is based. Tom
Bressoud and Shafeeq Sinnamohideen contributed to the performance measurements
reported here, while Partho Nath contributed to the implementation of ISR. Discussions

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 187

with Niraj Tolia and Dave Andersen were valuable in clarifying the limitations of thin
clients, as discussed inSections 3.1and 8.2. Discussions with Dave Bantz and Ramon
Caceres helped in articulating the properties of personal computing environments, as
presented inSection 2.1.

This research was partially supported by the National Science Foundation (NSF)
under grant numbers ANI-0081396 andCCR-0205266, and by the Intel Corporation.
Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the NSF, the Intel
Corporation or Carnegie Mellon University. All unidentified trademarks mentioned in the
paper are properties of their respective owners.

References

[1] Y. Artsy, R. Finkel, Designing a process migration facility: the Charlotte experience, IEEE Computer 22 (9)
(1989).

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, Xen
and the art of virtualization, in: Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, Bolton Landing, NY, USA, 2003.

[3] M. Beck, T. Moore, J.S. Plank, An end-to-end approach to globally scalable network storage, in: Proceedings
of the ACM SIGCOMM Conference, Pittsburgh, PA, 2002.

[4] T. Bressoud, M. Kozuch, C. Helfrich, M. Satyanarayanan, OpenCAS: a flexible architecture for building
and accessing content addressable storage, in: 2004 International Workshop on Scalable File Systems and
Storage Technologies, September 2004, San Francisco, CA, 2004.http://ardra.hpcl.cis.uab.edu/sfast04/.

[5] Business Applications PerformanceCorporation, SYSmark 2002, March, 2002.http://www.bapco.com.
[6] R. Caceres, C. Carter, C. Narayanaswami, M. Raghunath, Reincarnating PCs with portable SoulPads, in:

Proceedings of Mobisys 2005: the Third International Conference on Mobile Systems, Applications and
Services, June 2005, Seattle, WA, 2005.

[7] M. Carson, Adaptation and Protocol Testing Through Network Emulation, September 1999.
http://snad.ncsl.nist.gov/itg/nistnet/.

[8] F. Douglis, J.K. Ousterhout, Transparent process migration: design alternatives and the Sprite
implementation, Software Practice and Experience 21 (8) (1991).

[9] J. Edler, M. Hill, Dinero IV Trace-Driven Uniprocessor Cache Simulator,
http://www.cs.wisc.edu/~markhill/DineroIV/.

[10] D. Garlan, D.P. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura: toward distraction-free pervasive
computing, IEEE Pervasive Computing 1 (2) (2002).

[11] R.P. Goldberg, Survey of Virtual Machine Research, IEEE Computer 7 (6) (1974).
[12] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson, B. Bershad,G. Borriello, S. Gribble,

D. Wetherall, System support for pervasive applications, ACM Transactions on Computer Systems 22 (4)
(2004).

[13] L. Grinzo, Getting virtual with VMware 2.0, Linux Magazine (2000).
[14] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, M. West, Scale and

performance in a distributed file system, ACM Transactions on Computer Systems 6 (1) (1988).
[15] E. Jul, H. Levy, N. Hutchinson, A. Black, Fine-grained mobility in the emerald system, ACM Transactions

on Computer Systems 6 (1) (1988).
[16] J.J. Kistler, M. Satyanarayanan, Disconnected operation in the Coda file system, ACM Transactions on

Computer Systems 10 (1) (1992).
[17] M. Kozuch, C. Helfrich, D. O’Hallaron, M. Satyanarayanan, Enterprise client management with Internet

Suspend/Resume, Intel Technical Journal 8 (4) (2004).
[18] M. Kozuch, M. Satyanarayanan, Internet Suspend/Resume, in: Proceedings of the Fourth IEEE Workshop

on Mobile Computing Systems and Applications, June 2002, Callicoon, NY, 2002.
[19] M. Kozuch, M. Satyanarayanan,T. Bressoud, C. Helfrich, S. Sinnamohideen, Seamless mobile computing

on fixed infrastructure, IEEE Computer 37 (7) (2004).

http://ardra.hpcl.cis.uab.edu/sfast04/
http://www.bapco.com
http://snad.ncsl.nist.gov/itg/nistnet/
http://www.cs.wisc.edu/~markhill/DineroIV/

188 M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189

[20] A. Lai, J. Nieh, Limits of wide-area thin-clientcomputing, in: Proceedings of the 2002 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, June 2002, Marina Del Rey,
CA, 2002.

[21] National Institute of Standards and Technology, Secure Hash Standard (SHS), 1995.
[22] L. Peterson, T. Anderson, D. Culler, T. Roscoe, A blueprint for introducing disruptive technology into the

internet, in: Proceedings of the First ACM Workshop on Hot Topics in Networks, Princeton, NJ, 2002.
[23] E. Pitt, K. McNiff, java.rmi: The Remote MethodInvocation Guide, Addison-Wesley Professional, 2001.
[24] M.L. Powell, B.P. Miller, Process migration in DEMOS/MP, in: Proceedings of the 9th ACM Symposium

on Operating Systems Principles, October 1983, Bretton Woods, NH, 1983.
[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network, in:

Proceedings of the ACM SIGCOMM Conference, August 2001, San Diego, CA, 2001.
[26] A. Rowstron, P. Druschel, Pastry:Scalable, distributed object location and routing for large-scale peer-to-

peer systems, in: Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, 2001.

[27] M. Satyanarayanan, Scalable, Secure and highly available distributed file access, IEEE Computer 23 (5)
(1990).

[28] M. Satyanarayanan, The Evolution of Coda, ACMTransactions on Computer Systems 20 (2) (2002).
[29] P. Schwann, Lustre: building a file system for 1,000-node Clusters, in: Proceedings of the 2003 Linux

Symposium, July 2003, Ottawa, Canada, 2003.
[30] H.A. Simon, Administrative Behavior, Macmillan, New York, NY, 1947.
[31] H.A. Simon, Designing organizations for an information-rich world,in: M. Greenberg (Ed.), Computers,

Communications and the Public Interest, Johns Hopkins Press, Baltimore, MD, 1971.
[32] S.W. Smith, V. Austel, Trusting trusted hardware: toward a formal model for programmable secure

coprocessors, in: Proceedings of the Third USENIX Workshop on Electronic Commerce, August 1998,
Boston, MA, 1998.

[33] J.P. Sousa, D. Garlan, Aura: an architectural framework for user mobility in ubiquitous computing
environments, in: Software Architecture: System Design, Development, and Maintenance (Proceedings of
the 3rd Working IEEE/IFIP Conference on Software Architecture), Kluwer Academic Publishers, 2002.

[34] J.G. Steiner, C. Neuman, J.I. Schiller, Kerberos: an authentication service for open network systems, in:
USENIX Conference Proceedings, Dallas, TX, Winter 1988.

[35] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H.Balakrishnan, Chord: a scalable peer-to-peer lookup
service for internet applications, in: Proceedings of the ACM SIGCOMM 2001, San Diego, CA, 2001.

[36] Trusted Computing Group (TCG),https://www.trustedcomputinggroup.org/, 2003.
[37] M. Theimer, K. Lantz, D. Cheriton, Preemptable remote execution facilities for the V-system, in:

Proceedings of the 10th Symposium on Operating System Principles, Orcas Island, WA, December 1985.
[38] J.D. Tygar, B. Yee, Dyad: a system for using physically secure coprocessors, in: Proceedings of the Joint

Harvard MIT Workshop on Technological Strategies for Protecting Intellectual Property in the Networked
Multimedia Environment, April 1993.

[39] M. Weiser, The computer for the 21st century, Scientific American (1991).
[40] V.C. Zandy, B.P. Miller, M. Livny, Process hijacking, in: 8th International Symposium on High Performance

Distributed Computing, Redondo Beach, CA, August 1999.
[41] E. Zayas, Attacking the process migration bottleneck, in: Proceedings of the 11th ACM Symposium on

Operating System Principles, Austin, TX, November 1987.
[42] B.Y. Zhao, J. Kubatowicz, A. Joseph, Tapestry: an infrastructure for fault-tolerant wide-area location and

routing, Tech. Rep. UCB/CSD-01-1141, University of California at Berkeley, April 2001.

Mahadev Satyanarayanan is the Carnegie Group Professor of Computer Science at
Carnegie Mellon University. His research interests include mobile computing, pervasive
computing, and distributed systems (especially distributed file systems). From 2001 to
2004 he was the founding director of Intel Research Pittsburgh, where the Internet
Suspend/Resume project was initiated. He is a Fellow of the ACM and the IEEE, and
the founding Editor-in-Chief of IEEE Pervasive Computing.

https://www.trustedcomputinggroup.org/

M. Satyanarayanan et al. / Pervasive and Mobile Computing 1 (2005) 157–189 189

Michael Kozuch is a senior researcher for Intel Corporation. Mike received a B.S. degree
from Penn State University in 1992 and a Ph.D. degree from Princeton University in 1997,
both in electrical engineering. Mike has worked for Intel research labs since 1997, four
years in Oregon and three years in Pittsburgh, Pennsylvania. His research focuses on novel
uses of virtual machine technology.

Casey Helfrich is a research engineer at the Intel Research Lab in Pittsburgh. He received
a Bachelor’s degree in Physics from Carnegie Mellon University in 2001 and an additional
B.S. degree in Computer Science from Carnegie Mellon University in 2002. He joined the
Pittsburgh lab at its inception and helped design and build the IT infrastructure for Intel
Research. Casey has spent the past two years working on the combination of virtualization
and data distribution.

David O’Hallaron is an Associate Professor of Computer Science and Electrical and
Computer Engineering at Carnegie Mellon University. His research interests include
mobile computing, computational database systems, and scientific computing.

	Towards seamless mobility on pervasive hardware
	Introduction
	Background
	Whither personal computing?
	Why seamless mobility matters

	Design strategies for seamless mobility
	Thin client
	Distributed file system
	Process migration
	Language-based mobility
	Aura task migration
	Comparing strategies
	Deriving a better strategy

	Internet Suspend/Resume
	Background
	Hypothetical scenario
	Realization
	Evolution

	ISR design and implementation
	Distributed file system
	Security model
	Data layout
	Client architecture

	ISR performance
	Metrics
	Benchmark
	Experimental setup
	VM state transfer policies
	Baseline policy
	Description
	Results

	Fully proactive policy
	Description
	Results

	Pure demand-fetch policy
	Description
	Results

	Impact of storage efficiency

	Augmenting ISR with portable storage
	Background
	Lookaside cache miss handling
	Demand-fetch with lookaside policy
	Description
	Results

	Off-machine lookaside

	Assumptions and limitations of ISR
	Network bandwidth
	Network dependence
	Ubiquitous virtualized hardware

	Conclusion
	Acknowledgements
	References

